In comparison with the advancement of switchable, nonlinear, and active components in electronics, solid-state thermal components for actively controlling heat flow have been extremely rare. We demonstrate a high-contrast and reversible polymer thermal regulator based on the structural phase transition in crystalline polyethylene nanofibers. This structural phase transition represents a dramatic change in morphology from a highly ordered all-trans conformation to a combined trans and gauche conformation with rotational disorder, leading to an abrupt change in phonon transport along the molecular chains. For five nanofiber samples measured here, we observe an average thermal switching ratio of ~8× and maximum switching ratio of ~10×, which occurs in a narrow temperature range of 10 K across the structural phase transition. To the best of our knowledge, the ~10× switching ratio exceeds any reported experimental values for solid-solid and solid-liquid phase transitions of materials. There is no thermal hysteresis observed upon heating/cooling cycles.
Thermal rectification is an exotic thermal transport phenomenon which allows heat to transfer in one direction but block the other. We demonstrate an unusual dual-mode solidstate thermal rectification effect using a heterogeneous "irradiated-pristine" polyethylene nanofiber junction as a nanoscale thermal diode, in which heat flow can be rectified in both directions by changing the working temperature. For the nanofiber samples measured here, we observe a maximum thermal rectification factor as large as~50%, which only requires a small temperature bias of <10 K. The tunable nanoscale thermal diodes with large rectification and narrow temperature bias open up new possibilities for developing advanced thermal management, energy conversion and, potentially thermophononic technologies.
Quantitative mapping of temperature fields with nanometric resolution is critical in various areas of scientific research and emerging technology, such as nanoelectronics, surface chemistry, plasmonic devices, and quantum systems. A key challenge in achieving quantitative thermal imaging with scanning thermal microscopy (SThM) is the lack of knowledge of the tip–sample thermal resistance (R TS), which varies with local topography and is critical for quantifying the sample temperature. Recent advances in SThM have enabled simultaneous quantification of R TS and topography in situations where the temperature field is modulated enabling quantitative thermometry even when topographical features cause significant variations in R TS. However, such an approach is not applicable to situations where the temperature modulation of the device is not readily possible. Here we show, using custom-fabricated scanning thermal probes (STPs) with a sharp tip (radius ∼25 nm) and an integrated heater/thermometer, that one can quantitatively map unmodulated temperature fields, in a single scan, with ∼7 nm spatial resolution and ∼50 mK temperature resolution in a bandwidth of 1 Hz. This is accomplished by introducing a modulated heat input to the STP and measuring the AC and DC responses of the probe’s temperature which allow for simultaneous mapping of the tip–sample thermal resistance and sample surface temperature. The approach presented herecontact resistance resolved scanning thermal microscopy (CR-SThM)can greatly facilitate temperature mapping of a variety of microdevices under practical operating conditions.
Background Ticks are important medical arthropods that can transmit hundreds of pathogens, such as parasites, bacteria, and viruses, leading to serious public health burdens worldwide. Unexplained fever is the most common clinical manifestation of tick-borne diseases. Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the surge of coronavirus disease 2019 (COVID-19) cases led to the hospital overload and fewer laboratory tests for tick-borne diseases. Therefore, it is essential to review the tick-borne pathogens and further understand tick-borne diseases. Purpose The geographic distribution and population of ticks in the Northern hemisphere have expanded while emerging tick-borne pathogens have been introduced to China continuously. This paper focused on the tick-borne pathogens that are threatening public health in the world. Their medical significant tick vectors, as well as the epidemiology, clinical manifestations, diagnosis, treatment, prevention, and control measures, are emphasized in this document. Methods In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. Results Ticks presented a great threat to the economy and public health. Although both infections by tick-borne pathogens and SARS-CoV-2 have fever symptoms, the history of tick bite and its associated symptoms such as encephalitis or eschar could be helpful for the differential diagnosis. Additionally, as a carrier of vector ticks, migratory birds may play a potential role in the geographical expansion of ticks and tick-borne pathogens during seasonal migration. Conclusion China should assess the risk score of vector ticks and clarify the potential role of migratory birds in transmitting ticks. Additionally, the individual and collective protection, vector control, comprehensive surveillance, accurate diagnosis, and symptomatic treatment should be carried out, to meet the challenge. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.