Perilipin is the most abundant adipocyte-specific protein that coats lipid droplets, and it is required for optimal lipid incorporation and release from the droplet. We identified two heterozygous frameshift mutations in the perilipin gene (PLIN1) in three families with partial lipodystrophy, severe dyslipidemia, and insulin-resistant diabetes. Subcutaneous fat from the patients was characterized by smaller-than-normal adipocytes, macrophage infiltration, and fibrosis. In contrast to wild-type perilipin, mutant forms of the protein failed to increase triglyceride accumulation when expressed heterologously in preadipocytes. These findings define a novel dominant form of inherited lipodystrophy and highlight the serious metabolic consequences of a primary defect in the formation of lipid droplets in adipose tissue.
OBJECTIVETo compare the improvements in glycemic control associated with transitioning to insulin pump therapy in patients using continuous glucose monitoring versus standard blood glucose self-monitoring.RESEARCH DESIGN AND METHODSThe RealTrend study was a 6-month, randomized, parallel-group, two-arm, open-label study of 132 adults and children with uncontrolled type 1 diabetes (A1C ≥8%) being treated with multiple daily injections. One group was fitted with the Medtronic MiniMed Paradigm REAL-Time system (PRT group), an insulin pump with integrated continuous subcutaneous glucose monitoring (CGM) capability, with instructions to wear CGM sensors at least 70% of the time. Conventional insulin pump therapy was initiated in the other group (continuous subcutaneous insulin infusion [CSII] group). Outcome measures included A1C and glycemic variability.RESULTSA total of 115 patients completed the study. Between baseline and trial end, A1C improved significantly in both groups (PRT group −0.81 ± 1.09%, P < 0.001; CSII group −0.57 ± 0.94%, P < 0.001), with no significant difference between groups. When the 91 patients who were fully protocol-compliant (including CGM sensor wear ≥70% of the time) were considered, A1C improvement was significantly greater in the PRT group (P = 0.004) (PRT group −0.96 ± 0.93%, P < 0.001; CSII group −0.55 ± 0.93%, P < 0.001). Hyperglycemia parameters decreased in line with improvements in A1C with no impact on hypoglycemia.CONCLUSIONSCGM-enabled insulin pump therapy improves glycemia more than conventional pump therapy during the first 6 months of pump use in patients who wear CGM sensors at least 70% of the time.
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.