Abstract. To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model analysis was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%–60% of the total mass at both sites, indicating that the gas-to-particle condensation process was important in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. A rough estimation was given that 69% of the PM10 and 87% of the PM1.8 in Beijing urban were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.
Abstract. Understanding the particle number size distributions in diversified atmospheric environments is important in order to design mitigation strategies related to submicron particles and their effects on regional air quality, haze and human health. In this study, we conducted 15 different field measurement campaigns between 2007 and 2011 at 13 individual sites in China, including five urban sites, four regional sites, three coastal/background sites and one ship cruise measurement along eastern coastline of China. Size resolved particles were measured in the 15–600 nm size range. The median particle number concentrations (PNCs) were found to vary in the range of 1.1−2.2 × 104 cm−3 at urban sites, 0.8−1.5 × 104 cm−3 at regional sites, 0.4−0.6 × 104 cm−3 at coastal/background sites, and 0.5 × 104 cm−3 during cruise measurement. Peak diameters at each of these sites varied greatly from 24 to 115 nm. Particles in the 15–25 nm (nucleation mode), 25–100 nm (Aitken mode) and 100–600 nm (accumulation mode) range showed different characteristics at each sites, indicating the features of primary emissions and secondary formation in these diversified atmospheric environments. Diurnal variations show a build-up of accumulation mode particles belt at regional sites, suggesting the contribution of regional secondary aerosol pollution. Frequencies of new particle formation (NPF) events were much higher at urban and regional sites than at coastal sites and during cruise measurement. The average growth rates (GRs) of nucleation mode particles were 8.0–10.9 nm h−1 at urban sites, 7.4–13.6 nm h−1 at regional sites and 2.8–7.5 nm h−1 at coastal sites and during cruise measurement. The high gaseous precursors and strong oxidation at urban and regional sites not only favored the formation of particles, but also accelerated the growth rate of the nucleation mode particles. No significant difference in condensation sink (CS) during NPF days were observed among different site types, suggesting that the NPF events in background areas were more influenced by the pollutant transport. In addition, average contributions of NPF events to potential cloud condensation nuclei (CCN) at 0.2% super-saturation in the afternoon of all sampling days were calculated as 11% and 6% at urban sites and regional sites, respectively. On the other hand, NPF events at coastal sites and during cruise measurement had little impact on potential production of CCN. This study provides a large data set of particle size distribution in diversified atmosphere of China, improving our general understanding of emission, secondary formation, new particle formation and corresponding CCN activity of submicron aerosols in Chinese environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.