This analysis shows that VEDO facilitates a quantitative treatment strategy allowing standardised application of HT by technicians of different HT centres, which will potentially lead to improved treatment quality and the possibility of tracking the effectiveness of different treatment strategies.
Accumulating evidence shows that hyperthermia improves head-and-neck cancer treatment. Over the last decade, we introduced a radiofrequency applicator, named HYPERcollar, which enables local heating also of deep locations in this region. Based on clinical experience, we redesigned the HYPERcollar for improved comfort, reproducibility and operator handling. In the current study, we analyze the redesign from an electromagnetic point of view. We show that a higher number of antennas and their repositioning allow for a substantially improved treatment quality. Combined with the much better reproducibility of the water bolus, this will substantially minimize the risk of underexposure. All improvements combined enable a reduction of hot-spot prominence (hot-spot to target SAR quotient) by 32% at an average of 981 W, which drastically reduces the probability for system power to become a treatment limiting source. Moreover, the power deposited in the target selectively can be increased by more than twofold. Hence, we expect that the HYPERcollar redesign currently under construction allows us to double the clinically applied power to the target while reducing the hot-spots, resulting in higher temperatures and, consequently, better clinical outcome.
To apply high-quality hyperthermia treatment to tumours at deep locations in the head and neck (H&N), we have designed and built a site-specific phased-array applicator. Earlier, we demonstrated its features in parameter studies, validated those by phantom measurements and clinically introduced the system. In this paper we will critically review our first clinical experiences and demonstrate the pivotal role of hyperthermia treatment planning (HTP). Three representative patient cases (thyroid, oropharynx and nasal cavity) are selected and discussed. Treatment planning, the treatment, interstitially measured temperatures and their interrelation are analysed from a physics point of view. Treatments lasting 1 h were feasible and well tolerated and no acute treatment-related toxicity has been observed. Maximum temperatures measured are in the range of those obtained during deep hyperthermia treatments in the pelvic region but mean temperatures are still to be improved. Further, we found that simulated power absorption correlated well with measured temperatures illustrating the validity of our treatment approach of using energy profile optimizations to arrive at higher temperatures. This is the first data proving that focussed heating of tumours in the H&N is feasible. Further, HTP proved a valuable tool in treatment optimization. Items to improve are (1) the transfer of HTP settings into the clinic and (2) the registration of the thermal dose, i.e. dosimetry.
This study shows that patient-specific temperature simulations combined with tissue property reconstruction from sensory data provides accurate minimally invasive 3D dosimetry during hyperthermia treatments: T50 in sessions without invasive measurements can be predicted with a median accuracy of 0.4 °C.
The HYPERcollar redesign improves water bolus shape, stability and skin contact. The renewed positioning strategy allows for positioning of the patient within the required precision of ±5 mm. By clinically introducing the new design, we aim at improving not only treatment quality and reproducibility, but also patient comfort and operator handling, which are all important for a better hyperthermia treatment quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.