Hitherto acoustic cloaking devices, which conceal objects externally, depend on objects' characteristics. Despite previous works, we design cloaking devices placed adjacent to an arbitrary object and make it invisible without the need to make it enclosed. Applying sequential linear coordinate transformations leads to a non-closed acoustic cloak with homogeneous materials, creating an open invisible region. Firstly, we propose to design a non-closed carpet cloak to conceal objects on a reflecting plane. Numerical simulations verify the cloaking effect, which is completely independent of the geometry and material properties of the hidden object. Moreover, we extend this idea to achieve a directional acoustic cloak with homogeneous materials that can render arbitrary objects in free space invisible to incident radiation. To demonstrate the feasibility of the realization, a non-resonant meta-atom is utilized which dramatically facilitated the physical realization of our design. Due to the simple acoustic constitutive parameters of the presented structures, this work paves the way toward realization of non-closed acoustic devices, which could find applications in airborne sound manipulation and underwater demands.
Based on transformation acoustic methodology, we propose an algorithm for designing acoustic non-resonant lens antenna, which is competent to generate multiple directive beams that are pointing at the desired direction. Unattainable with previous works, the present approach is capable of adjusting the directivity of each radiated beam individually, which is of the utmost importance in several acoustic applications such as in sonar systems. A linear transformation function is intentionally used for eliminating the inhomogeneity of the obtained materials and to pave the way towards more general acoustic patterns. Several numerical simulations are performed to show the capability of the proposed method in manipulating the acoustic waves. To authenticate the concept, a structure that can generate four beams with different directivities is realized with non-resonant meta-fluid bi-layered structure through effective medium theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.