Soil temperature is an important meteorological variable which plays a significant role in hydrological cycle. In present study, artificial intelligence technique employed for estimating for 3 daysa head soil temperature estimation at 10 and 20 cm depth. Soil temperature daily data for the period 1 January 2012 to 31 December 2013 measured in three stations namely (Mosul, Baghdad and Muthanna) in Iraq. The training data set includes 616 days and the testing data includes 109 days. The Levenberg-Marquardt, Scaled Conjugate Gradient and Bayesian regularization algorithms. To evaluate the ANN models, Root mean square error (RMSE), Mean absolute error (MAE), Mean absolute percentage error (MAPE) and Correlation Coefficient (r) were determined. According to the four statistical indices were calculated of the optimum ANN model, it was ANN model (3) in Muthanaa station for the depth 10 cm and ANN model (3) in Baghdad station for the depth 20 were (RMSE=0.959oC, MAE=0.725, MAPE=4.293, R=0.988) and (RMSE=0.887OC, MAE=0.704, MAPE=4.239, R=0.993) respectively, theses statistical criteria shown the efficiency of artificial neural network for soil temperature estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.