In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF‐energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra‐wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore‐sight gain variation from 2.2 to 3.43 dBi at maximum. The antenna size is compacted to a 32 mm × 24 mm using a fractal‐shaped MTM when mounted on the INP substrate with a relative permittivity ɛr = 3.106−j0.0314 and a relative permeability µr = 1.548−j0.0907. Finally, the maximum obtained voltage from the proposed antenna is found about 2 V at 2.45 GHz and 2.5 V at 5.8 GHz, where, the corresponding measured equivalent isotropic radiated power is about 2.35 W at 2.45 GHz and 6.12 W at 5.8 GHz.
This paper presents a microwave sensor based on a two-ports network for liquid characterizations. The proposed sensor is constructed as a miniaturized microwave resonator based on Moore fractal geometry of the 4th iteration. The T-resonator is combined with the proposed structure to increase the sensor quality factor. The proposed sensor occupies an area of 50 × 50 × 1.6 mm3 printed on an FR4 substrate. Analytically, a theoretical study is conducted to explain the proposed sensor operation. The proposed sensor was fabricated and experimentally tested for validation. Later, two pans were printed on the sensor to hold the Sample Under Test (SUT) of crude oil. The frequency resonance of the proposed structure before loading SUT was found to be 0.8 GHz. After printing the pans, a 150 MHz frequency shift was accrued to the first resonance. The sensing part was accomplished by monitoring the S-parameters in terms of S12 regarding the water concentration change in the crude oil samples. Therefore, 10 different samples with different water percentages were introduced to the proposed sensor to be tested for detecting the water content. Finally, the measurements of the proposed process were found to agree very well with their relative simulated results.
This research puts forward a design regarding a novel compact bi-directional UWB (1.9–10.6 GHz) tapered slot patch antenna that has dual band-notches characteristics within 3.4–3.9 GHz applicable for WiMax application and 5-6 GHz applicable for WLAN (IEEE 802.11a and HIPERLAN/2 systems). A parasitic quasi-trapezoidal shape single split ring resonator SRR is positioned to secure the first WiMax band-notch to minimize the electromagnetic interference occurring in WiMax band. A single circular complementary split-ring resonator (CSRR) is etched to secure the second band-notch. Simulated and measured results showed a good match, thereby signifying that the proposed antenna is an optimum candidate for UWB communication applications along with the guide lines design to employ the notch bands in the preferred frequency regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.