The stability of transmission lines relies on the health of the insulators, such as glass string insulators, which may occasionally flashover during an overvoltage. The likelihood of flashover increases notably when the glass insulator is wrapped by a wet contaminant layer. In this paper a study of the surface thermal profile of glass disc insulators insulation had been carried out for both clean and polluted surfaces. A finite-element simulation with time dependent model was carried out using COMSOL Multiphysics software. The variation of the insulator surface temperature with applied voltage as well as with pollution layer thickness is explained. The results illustrate the significant effect of pollution conductivity on heat propagate along the surface of the glass insulators with the increase higher voltages' magnitudes. Study of the aging level impact on a steady state thermal for glass insulation surface is also carried out.
<p>Suitable diagnostic techniques for outdoor glass insulators are important for ensuring the reliablilty and stability of power system. The possibility of insulator flash-over increases, especially when the insulator is covered by pollution layers or has an internal defect. In this paper, a new technique to detect the pollution level and invisible damage by measuring the surface temperature of glass disc insulators is proposed. A high definition camera had been used to determine the surface temperatures of four glass insulators. The effects of applied voltage on the surface temperature and its distribution were studied. The results show the possibility of using the infrarad camera to detect the aging level and invisible damages of the glass insulators.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.