The study developed allometric equations for estimating liana stem and total above-ground biomass in primary and secondary forests in the Penang National Park, Penang, Malaysia. Using biomass-diameter-length data of 60 liana individuals representing 15 species, allometric equations were developed for liana stem biomass and total above-ground biomass (TAGB). Three types of allometric equations were developed: models fitted to untransformed, weighted, and log-transformed (log 10) data. There was a significant linear relationship between biomass and the predictors (diameter, length, and/or their combinations). The same set of models was developed for primary and secondary forests due to absence of differences in regression line slopes of the forests (ANCOVA: > 0.05). The coefficients of determination values of the models were high (stem: 0.861 to 0.990; TAGB: 0.900 to 0.992). Generally, log-transformed models showed better fit (Furnival's index, FI < 0.50) than the other models (FI > 0.5). A comparison of the best TAGB model in this study (based on FI) with previously published equations indicated that most of the equations significantly (< 0.05) overestimated TAGB of lianas. However, a previous equation from Southeast Asia estimated TAGB similar to that of the current equation (> 0.05). Therefore, regional or intracontinental equations should be preferred to intercontinental equations when estimating liana biomass.
Most studies have concluded that liana diversity and structure increase with disturbance. However, a contradictory pattern has emerged recently calling for more research in the area. Liana diversity and structure were investigated in three forest types that differ in disturbance intensity (nondisturbed, moderately disturbed and heavily disturbed forest: NDF, MDF and HDF, respectively) in the Atewa Range Forest Reserve, Ghana. In each forest type, 10 square plots of 0.25 ha were demarcated. Lianas with diameter ! 1 cm located on trees with diameter ! 10 cm were enumerated. A total of 429 individuals representing 40 species, 29 genera and seventeen families were identified in the study. Shannon diversity and species richness of lianas were significantly lower in the HDF (P < 0.05). Liana density and basal area differed significantly across all forest types (P < 0.0001). The importance value index (IVI) of most liana species varied greatly across the forest types. The current study has provided evidence to support the pattern of decreasing liana diversity and structure with disturbance in some tropical forests. Further studies are recommended to gain more understanding of the factors that are responsible for the divergent liana responses to disturbance in tropical forests.
Abstract:This study determined variation in liana diversity, composition and community structure in different topographic habitats, as well as the environmental factors associated with them in the Atewa Range Forest Reserve, Ghana. The above-mentioned liana assemblage attributes were examined in thirty 40 × 40-m plots, randomly demarcated within three topographic habitats at different average altitudes (hill bottom: 85.6 m asl, hill slope: 343 m asl, plateau: 641 m asl). Soil properties, altitude and slope angle were determined for the plots. Using multiple stepwise regression, non-metric multidimensional scaling analysis, and analysis of similarity, environmental factors that influenced the above-mentioned attributes of liana assemblages were determined. The findings revealed significant variation in liana diversity, composition and community structure among the topographic habitats. Liana species composition related with soil P, Mg and moisture, and altitude. Soil Mg and P associated positively with species composition in the hill-bottom habitat while altitude and soil moisture related negatively with it. A reverse trend occurred in the other habitats. Five environmental factors related significantly with liana diversity and community structure as follows – species richness: soil Ca and Mg, altitude; Shannon diversity: soil Ca, altitude; abundance: soil moisture and P, altitude; basal area: soil moisture, P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.