Forster resonant energy transfer (FRET) can be an efficient energy transfer mechanism between densely packed fluorescent emitters. It plays a key role in photosynthesis but may also be detrimental. In optoelectronic devices for instance, FRET funnels energy to quenching sites and favors losses. Here, we image individual self-assembled chains of stacked CdSe nanoplatelets and demonstrate fluorescence intermittency (blinking) of chain portions corresponding to a few tens of platelets. This collective blinking is attributed to the fluctuations of a quencher site, to which excitons are transferred by FRET migration from the surrounding platelets. We develop an analytical random walk model of the chain and show that an ensemble of platelets can be quenched collectively by a single site provided that its quenching (nonradiative recombination) rate is faster than the geometric mean of the radiative recombination rate and the transfer rate, which for self-assembled platelets would be of the order of (100 ps) −1 .
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We show by micro-photoluminescence collective blinking of self-assembled stacks of CdSe nanoplatelets. We highlight through a random walk model the effects of FRET and quencher emitters in the stacks on the fluorescence fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.