The effect of laser technological parameters on the color of denim fabric is a topic of research for scientists in various countries. More detailed investigations, which would estimate the effect of several main laser technological parameters on the color, taking into account morphological fabric modifications, have been yet to be performed. Therefore, the aim of this study was to define the effect of laser technological parameters on the color of denim fabric. In the research, denim fabric was used with the following fiber content: 98% cotton and 2% EL, surface density 357 g/m2, weave – twill 3/1. The specimens were treated using a CO2 laser, with changing beam power and motorized drive parameters – the speed and step. Using a spectrophotometer, the change of the fabric surface color, Δ E, and color system, HSB, were determined both before and after laser treatment. Morphological analysis of the fabric was carried out uing a scanning electron microscope. The research showed that the color change, Δ E, of the laser-treated specimens is different in the warp and weft directions. The highest Δ E was reached while changing the beam power. The largest effect on the change of color hue, H, and color saturation, S, amongst all tested laser technological parameters was found for laser power. Color brightness, B, was mostly affected by laser step size, when laser energy density is ∼6 mJ/cm2.
In modern manufacturing embroidered elements are used in such areas as implant production, rehabilitation (e.g., embroidered sensors), medical diagnostics, production of smart garments etc., where high accuracy is required to maintain the functionality of the product. Due to the influence of mechanical forces taking part in the embroidery process, the embroidery system is deformed, resulting in noncompliance of the embroidery element with the digitally designed one. Three fabrics have been selected as the objects of the research with the fiber composition of 65 % polyester and 35 % cotton, differing by weave and density. 60 × 60 mm and 6 mm wide closed circuit square-shaped embroidery elements have been used for the research. According to the performed analysis of the results, the dimensions of the closed-circuit square-shaped embroidery element have changed in comparison to that of the digitally designed one. The width of the embroidery element, which was the most adequate to the digitally designed one, was achieved in the direction of warp. The obtained results have shown that in the corners the width of the embroidery element in the directions of warp and weft is bigger than the one in the centers of the segments.
Purpose The purpose of this paper is to determine the influence made by complex finishing of denim fabrics, i.e. laser treatment and industrial washing, on the change in tension properties of fabric. Design/methodology/approach Test specimens were treated by a laser JG-10050. Lasers main technological parameters: maximum laser beam power is 65 W, laser types are hermetic and detached CO2, laser tube wavelength is 10.62 µm. The test specimens processed by different laser energy density have been exposed to industrial washing and their tensile characteristics have been investigated. Findings The results of the research have demonstrated that complex finishing reduces the breaking force; however, material extensibility remains almost unchanged. Mechanical behaviour and composition characteristics of fabric are determined both by laser motion direction in respect of warp or weft and laser energy density. Originality/value The carried-out analysis of scientific literature has shown that the effect of laser on the fabric surface is relevant both in scientific and practical terms: the scientific literature contains studies on absorptive properties of laser treated materials; however, the behaviour of materials after complex finishing has not been widely investigated thus far.
Embroidery technologies are widely applied for developing decorative elements of original design in garments, for integrating threads intended for protection into garments and other articles. Nonconformity of the shape and dimensions of the embroidered element with the designed digital image is influenced by properties of embroidery threads and fibres, by the filling type, density of stitches and other technological parameters. The objective of the paper is to explore the influence made by properties of fabrics and by the direction of stitches of the actual embroidered element on conformity of the shape with one of the designed digital image. For the research, embroidery threads of different purpose as well as three woven fabrics have been selected. For preparation of test samples, round digital images have been designed filling the embroidery area in different stitch directions. Analysis of the results of the investigations has demonstrated that the shape and dimensions of the embroidered element failed to conform to the shape and dimensions of the designed digital image in most cases. In certain cases, e.g. when the stitch direction goes towards the middle of the embroidered element, a defect, i. e. hole, is observed due to considerable concentration of stitches in the centre of the element.
Lately there have been a growing demand for energy sources that are suitable for powering smart textiles. A number of promising prototypes have been developed, many of which address important issues, but only to face new challenges. In this paper we propose a new approach to the development of energy source for smart textiles in order to overcome these challenges. The main feature of the new design is that the electrolyte is separated from the electrodes and is applied only when the cell needs to be activated. This makes shelf-life virtually infinite. We stress that this solution is suitable for specific applications only, outlined in the paper. The main aim of this study is to test viability of such an approach, using only textile materials. The presented electrical characteristics of the new battery should be assessed in this context. The main components of the battery include aluminium anode, air cathode and the shell made from cotton fabric. The paper focuses on the choice of textile-based materials for the anode and the cathode, since non-textile materials were used in these components in the original design. Besides that, the pure metal wire meshes have shown to be prone to oxidation. The new materials should address that issue as well. Electrical characteristics of the new design of the battery are measured, which confirm that there is no loss in battery performance. Next steps for further development of a multicell flexible textile battery, based on the results presented in this study, are outlined at the end of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.