To date, six candidate genera of anaerobic ammonium-oxidizing (anammox) bacteria have been identified, and numerous studies have been conducted to understand their ecophysiology. In this study, we examined the physiological characteristics of an anammox bacterium in the genus 'Candidatus Jettenia'. Planctomycete KSU-1 was found to be a mesophilic (20-42.5°C) and neutrophilic (pH 6.5-8.5) bacterium with a maximum growth rate of 0.0020 h(-1) . Planctomycete KSU-1 cells showed typical physiological and structural features of anammox bacteria; i.e. (29) N2 gas production by coupling of (15) NH4 (+) and (14) NO2 (-) , accumulation of hydrazine with the consumption of hydroxylamine and the presence of anammoxosome. In addition, the cells were capable of respiratory ammonification with oxidation of acetate. Notably, the cells contained menaquinone-7 as a dominant respiratory quinone. Proteomic analysis was performed to examine underlying core metabolisms, and high expressions of hydrazine synthase, hydrazine dehydrogenase, hydroxylamine dehydrogenase, nitrite/nitrate oxidoreductase and carbon monoxide dehydrogenase/acetyl-CoA synthase were detected. These proteins require iron or copper as a metal cofactor, and both were dominant in planctomycete KSU-1 cells. On the basis of these experimental results, we proposed the name 'Ca. Jettenia caeni' sp. nov. for the bacterial clade of the planctomycete KSU-1.
Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stableisotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H 2 ), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.
We successfully enriched a novel anaerobic ammonium-oxidizing (anammox) bacterium affiliated with the genus 'Candidatus Brocadia' with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized 'Ca. Brocadia fulgida' and 'Ca. Brocadia sinica' with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and produced hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20-45°C with a maximum activity at 37°C. The maximum specific growth rate (μ) was 0.0082h at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (K) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite (IC=11.6mM) but not by formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). The enriched anammox bacterium shared nearly half of genes with 'Ca. Brocadia sinica' and 'Ca. Brocadia fulgida'. The enriched bacterium showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its 16S rRNA gene sequence. Therefore, we proposed the name 'Ca. Brocadia sapporoensis' sp. nov.
Microbial degradation of lignin releases fermentable sugars, effective utilization of which could support biofuel production from lignocellulosic biomass. In the present study, a lignin-degrading bacterium was isolated from leaf soil and identified as Burkholderia sp. based on 16S rRNA gene sequencing. This strain was named CCA53, and its lignin-degrading capability was assessed by observing its growth on medium containing alkali lignin or lignin-associated aromatic monomers as the sole carbon source. Alkali lignin and at least eight lignin-associated aromatic monomers supported growth of this strain, and the most effective utilization was observed for p-hydroxybenzene monomers. These findings indicate that Burkholderia sp. strain CCA53 has fragmentary activity for lignin degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.