PA-X is a newly discovered protein that decreases the virulence of the 1918 H1N1 virus in a mouse model. However, the role of PA-X in the pathogenesis of highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype in avian species is totally unknown. By generating two PA-X-deficient viruses and evaluating their virulence in different animal models, we show here that PA-X diminishes the virulence of the HPAIV H5N1 strain A/Chicken/Jiangsu/k0402/2010 (CK10) in mice, chickens, and ducks. Expression of PA-X dampens polymerase activity and virus replication both in vitro and in vivo. Using microarray analysis, we found that PA-X blunts the global host response in chicken lungs, markedly downregulating genes associated with the inflammatory and cell death responses. Correspondingly, a decreased cytokine response was recapitulated in multiple organs of chickens and ducks infected with the wild-type virus relative to those infected with the PA-X-deficient virus. In addition, the PA-X protein exhibits antiapoptotic activity in chicken and duck embryo fibroblasts. Thus, our results demonstrated that PA-X acts as a negative virulence regulator and decreases virulence by inhibiting viral replication and the host innate immune response. Therefore, we here define the role of PA-X in the pathogenicity of H5N1 HPAIV, furthering our understanding of the intricate pathogenesis of influenza A virus. Influenza A virus (IAV) can infect diverse host species, from wild and domestic birds to mammalian species, and the pathogenesis of IAV is complex due to its remarkable genetic variability. The genome of IAV contains eight RNA segments that encode at least 17 viral proteins, including 8 initially identified proteins (PB2, PB1, PA, HA, NP, NA, M1, and NS1), 2 splicing variants of the M and NS genes (M2 and NS2) (1-3), and the recently identified proteins PB1-N40 (4), PB1-F2 (5), PA-X (6), M42 (7), NS3 (8), PA-N155, and PA-N182 (9). PB1-N40 is an N-terminally truncated version of the PB1 protein that lacks the transcriptase function but can still interact with other polymerase complex subunits and regulate virus replication in a specific genetic background (4). PB1-F2, encoded by an alternative open reading frame (ORF) of PB1, has multiple functions, including the induction of apoptosis (10), aggravation of inflammation (11,12), and secondary bacterial infection (13). PA-X is a frameshift product of the ribosome and acts to decrease the virulence of the 1918 H1N1 virus in mice (6). PA-N155 and PA-N182 are N-terminally truncated forms of PA, and the mutant viruses lacking these two proteins exhibit attenuated in vitro replication and pathogenicity in mice relative to the wild-type (wt) virus (9). M42 is the M2 isoform with an alternative ectodomain that can functionally replace M2 and support efficient viral replication (7). Selman et al. have identified NS3 as the isoform of NS1 and speculated that the codon providing NS3 expression could be associated with host adaptation and the overcoming of the species barrier (8)....
Some strains of Newcastle disease virus (NDV) genotype VIId cause more-severe tissue damage in lymphoid organs compared to other virulent strains. In this study, we aim to define the mechanism of this distinct pathological manifestation of genotype VII viruses. Pathology, virus replication, and the innate immune response in lymphoid tissues of chickens infected with two genotype VIId NDV strains (JS5/05 and JS3/05), genotype IX NDV F48E8 and genotype IV NDV Herts/33, were compared. Histopathologic examination showed that JS5/05 and JS3/05 produced more-severe lesions in the spleen and thymus, but these four virulent strains caused comparable mild lesions in the bursa. In addition, JS3/05 and JS5/05 replicated at significantly higher levels in the lymphatic organs than F48E8 and Herts/33. A microarray assay performed on the spleens of chickens infected with JS5/05 or Herts/33 revealed that JS5/05 elicited a more potent inflammatory response by increasing the number and expression levels of activated genes. Moreover, cytokine gene expression profiling showed that JS5/05 and JS3/05 induced a stronger cytokine response in lymphoid tissues compared to F48E8 and Herts/33. Taken together, our results indicate that the severe pathology in immune organs caused by genotype VIId NDV strains is associated with high levels of virus replication and an intense inflammatory response.
Highly pathogenic H5N1 influenza A virus remains a substantial threat to public health. To understand the molecular basis and host mechanism for the high virulence of H5N1 viruses in mammals, we compared two H5N1 isolates which have similar genetic backgrounds but greatly differ in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is nonpathogenic. We first showed that CK10 elicited a more potent innate immune response than did GS10 in mouse lungs by increasing the number and expression levels of activated genes. We then generated a series of reassortants between the two viruses and evaluated their virulence in mice. Inclusion of the CK10 PA gene in the GS10 background resulted in a dramatic increase in virulence. Conversely, expression of the GS10 PA gene in the CK10 background significantly attenuated the virulence. These results demonstrated that the PA gene mainly determines the pathogenicity discrepancy between CK10 and GS10 in mice. We further determined that arginine (R) at position 353 of the PA gene contributes to the high virulence of CK10 in mice. The reciprocal substitution at position 353 in PA or the exchange of the entire PA gene largely caused the transfer of viral phenotypes, including virus replication, polymerase activity, and manipulation of the innate response, between CK10 and GS10. We therefore defined a novel molecular marker associated with the high virulence of H5N1 influenza viruses, providing further insights into the pathogenesis of H5N1 viruses in mammals.
To generate a genotype VII Newcastle disease virus (NDV) vaccine with high yield in embryonated chicken eggs, we selected genotype VII NDV strain JS5/05, which possesses a high virus titer in embryos as the parental virus. Using reverse genetics, we generated a genetically tagged derivative (NDV/AI4) of JS5/05 by changing the amino acid sequence of the cleavage site of the F0 protein. Pathogenicity tests showed that NDV/AI4 was completely avirulent. NDV/AI4 was genetically stable and replicated efficiently during 10 consecutive passages in embryos. More importantly, serologic assays showed that oil-emulsion NDV/AI4 induced higher hemagglutination inhibition (HI) titers against the prevalent virus than oil-emulsion LaSota vaccine in chickens and geese. Moreover, NDV/AI4-induced HI titers rose faster than those elicited by LaSota in chickens. Both NDV/AI4 and LaSota provided protection against clinical disease and mortality after the challenge with the genotype VII NDV strain JS3/05. However, NDV/AI4 significantly reduced virus shedding from the vaccinated birds compared to LaSota. Taken together, these results suggest that NDV/AI4 can provide better protection than LaSota and is a promising vaccine candidate against genotype VII NDV.
Most highly pathogenic avian influenza A viruses cause only mild clinical signs in ducks, serving as an important natural reservoir of influenza A viruses. However, we isolated two H5N1 viruses that are genetically similar but differ greatly in virulence in ducks. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is low pathogenic. To determine the genetic basis for the high virulence of CK10 in ducks, we generated a series of single-gene reassortants between CK10 and GS10 and tested their virulence in ducks. Expression of the CK10 PA or hemagglutinin (HA) gene in the GS10 context resulted in increased virulence and virus replication. Conversely, inclusion of the GS10 PA or HA gene in the CK10 background attenuated the virulence and virus replication. Moreover, the PA gene had a greater contribution. We further determined that residues 101G and 237E in the PA gene contribute to the high virulence of CK10. Mutations at these two positions produced changes in virulence, virus replication, and polymerase activity of CK10 or GS10. Position 237 plays a greater role in determining these phenotypes. Moreover, the K237E mutation in the GS10 PA gene increased PA nuclear accumulation. Mutant GS10 viruses carrying the CK10 HA gene or the PA101G or PA237E mutation induced an enhanced innate immune response. A sustained innate response was detected in the brain rather than in the lung and spleen. Our results suggest that the PA and HA gene-mediated high virus replication and the intense innate immune response in the brain contribute to the high virulence of H5N1 virus in ducks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.