Tensor decomposition (TD) has shown promising performance in image completion and denoising. Existing methods always aim to decompose one tensor into latent factors or core tensors by optimizing a particular cost function based on a specific tensor model. These algorithms iteratively learn the optima from random initialization given any individual tensor, resulting in slow convergence and low efficiency. In this paper, we propose an efficient TD algorithm that aims to learn a global mapping from input tensors to latent core tensors, under the assumption that the mappings of multiple tensors might be shared or highly correlated. To this end, we train a deep neural network (DNN) to model the global mapping and then apply it to decompose a newly given tensor with high efficiency. Furthermore, the initial values of DNN are learned based on meta-learning methods. By leveraging the pretrained core tensor DNN, our proposed method enables us to perform TD efficiently and accurately. Experimental results demonstrate the significant improvements of our method over other TD methods in terms of speed and accuracy.
Recently, tensors are widely used to represent higher-order data with internal spatial or temporal relations, e.g. images, videos, hyperspectral images (HSIs). While the true signals are usually corrupted by noises, it is of interest to study tensor recovery problems. To this end, many models have been established based on tensor decompositions. Traditional tensor decomposition models, such as the CP and Tucker factorization, treat every mode of tensors equally. However, in many real applications, some modes of the data act differently from the other modes, e.g. channel mode of images, time mode of videos, band mode of HSIs. The recently proposed model called t-SVD aims to tackle such problems. In this paper, we focus on tensor denoising problems. Specifically, in order to obtain low-rank estimators of true signals, we propose to use different shrinkage functions to shrink the tensor singular values based on the t-SVD. We derive Stein’s unbiased risk estimate (SURE) of the proposed model and develop adaptive SURE-based tuning parameter selection procedure, which is totally data-driven and simultaneous with the estimation process. The whole modeling procedure requires only one round of t-SVD. To demonstrate our model, we conduct experiments on simulation data, images, videos and HSIs. The results show that the proposed SURE approximates the true risk function accurately. Moreover, the proposed model selection procedure picks good tuning parameters out. We show the superiority of our model by comparing with state-of-the-art denoising models. The experiments manifest that our model outperforms in both quantitative metrics (e.g. RSE, PSNR) and visualizing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.