BackgroundThe emergence of multidrug- or extensively drug-resistant Acinetobacter baumannii has made it difficult to treat and control infections caused by this bacterium. It is urgently necessary to search for alternatives to conventional antibiotics for control of severe A. baumannii infections. In recent years, bacteriophages and their derivatives, such as depolymerases, showed great potential as antibacterial or antivirulence agents against bacterial infections. Nonetheless, unlike broad-spectrum bactericidal antibiotics, phage-encoded depolymerase targets only a limited number of bacterial strains. Therefore, identification of novel depolymerases and evaluation of their ability to control A. baumannii infections is important.MethodsA bacteriophage was isolated from hospital sewage using an extensively drug-resistant A. baumannii strain as the host bacterium, and the phage’s plaque morphology and genomic composition were studied. A polysaccharide depolymerase (Dpo48) was expressed and identified, and the effects of pH and temperature on its activity were determined. Besides, a serum killing assay was conducted, and amino acid sequences homologous to those of putative polysaccharide depolymerases were compared.ResultsPhage IME200 yielded clear plaques surrounded by enlarged halos, with polysaccharide depolymerase activity against the host bacterium. A tail fiber protein with a Pectate_lyase_3 domain was identified as Dpo48 and characterized . Dpo48 was found to degrade the capsule polysaccharide of the bacterial surface, as revealed by Alcian blue staining. Dpo48 manifested stable activity over a broad range of pH (5.0–9.0) and temperatures (20–70 °C). Results from in vitro serum killing assays indicated that 50% serum was sufficient to cause a five log reduction of overnight enzyme-treated bacteria, with serum complement playing an important role in these killing assays. Moreover, Dpo48 had a spectrum of activity exactly the same as its parental phage IME200, which was active against 10 out of 41 A. baumannii strains. Amino acid sequence alignment showed that the putative tail fiber proteins had a relatively short, highly conserved domain in their N-terminal sequences, but their amino acid sequences containing pectate lyase domains, found in the C-terminal regions, were highly diverse.ConclusionsPhage-encoded capsule depolymerases may become promising antivirulence agents for preventing and controlling A. baumannii infections.
Carbapenem-resistant Klebsiella pneumoniae (CRKP) pose a significant threat to global public health. In present research, a total of 80 CRKP strains belonging to ST11 were collected with 70% (56 of 80 isolates) expressing a K47 capsular type. Thus, it is significant to prevent and control infections caused by these bacteria. Capsule depolymerases could degrade bacterial surface polysaccharides to reduce their virulence and expose bacteria to host immune attack. Previous studies have demonstrated the potential of phage-encoded depolymerases as antivirulent agents in treating CRKP infections in vitro and in vivo. Here, two capsule depolymerases (Dpo42 and Dpo43) derived from phage IME205 were expressed and characterized. Although both depolymerases act on strains with a capsular serotype K47, they are active against different subsets of strains, indicating subtle differences in capsule composition that exist within this serotype. The host range of phage IME205 matched to the sum of specificity range of Dpo42 and Dpo43. These two enzymes maintained stable activity in a relatively broad range of pH levels (pH 5.0-8.0 for Dpo42 and pH 4.0-8.0 for Dpo43) and temperatures (20-70 • C). Besides, both Dpo42 and Dpo43 could make host bacteria fully susceptible to the killing effect of serum complement and display no hemolytic activity to erythrocytes. In summary, capsule depolymerases are promising antivirulent agents to combat CRKP infections.
The emergence of multidrug- and extensively drug-resistant Acinetobacter baumannii has made it difficult to treat and control infections caused by this bacterium. Thus, alternatives to conventional antibiotics for management of severe A. baumannii infections is urgently needed. In our previous study, we found that a capsule depolymerase Dpo48 could strip bacterial capsules, and the non-capsuled A. baumannii were significantly decreased in the presence of serum complement in vitro. Here, we further explored its potential as a therapeutic agent for controlling systemic infections caused by extensively drug-resistant A. baumannii. Prior to mammalian studies, the anti-virulence efficacy of Dpo48 was first tested in a Galleria mellonella infection model. Survival rate of Dpo48-pretreated bacteria or Dpo48 treatment group was significantly increased compared to the infective G. mellonella without treatment. Furthermore, the safety and therapeutic efficacy of Dpo48 to mice were evaluated. The mice treated with Dpo48 displayed normal serum levels of TBIL, AST, ALT, ALP, Cr, BUN and LDH, while no significant histopathology changes were observed in tissues of liver, spleen, lung, and kidney. Treatment with Dpo48 could rescue normal and immunocompromised mice from lethal peritoneal sepsis, with the bacterial counts in blood, liver, spleen, lung, and kidney significantly reduced by 1.4–3.3 log colony-forming units at 4 h posttreatment. Besides, the hemolysis and cytotoxicity assays showed that Dpo48 was non-homolytic to human red blood cells and non-toxic to human lung, liver and kidney cell lines. Overall, the present study demonstrated the promising potential of capsule depolymerases as therapeutic agents to prevent antibiotic-resistant A. baumannii infections.
From February 2010 to July 2011, 183 of 416 presumptive Klebsiella pneumoniae isolates with reduced susceptibility to third-generation cephalosporins from patients with lower respiratory tract infection were collected from seven tertiary hospitals in China. Phenotypic and genotypic methods were employed to characterize 158 extended-spectrum β-lactamase (ESBL)-producers. Among the 158 isolates analyzed, 134 (84.8%) harbored bla(CTX-M) , within which the most predominant ESBL gene was CTX-M-14 (49.4%), followed by CTX-M-15 (12.0%) and CTX-M-27 (10.8%). Also, 120 (75.9%) harbored bla(SHV) . One novel SHV variant, bla(SHV -142) with T18A and L35Q substitutions, was identified. Ninety-one isolates carried bla(TEM-1). An isolate containing bla(TEM-135) was first identified in Klebsiella spp. bla(KPC)-2) was detected in 5 isolates. More than one ESBL combination was detected in 18 isolates (11.4%). Fifty-four (34.2%) isolates demonstrated the multidrug resistant (MDR) phenotype. Seventy-four sequence types (STs) were identified, which showed large genetic background diversity in ESBL-producing K. pneumoniae isolates from the six areas. This is the first report on the high prevalence of CTX-M-27 in China with the possible transmission of a single clone (ST48). The correlated surveillance of organisms with MDR phenotype should be investigated in future.
Background: Macrolide antibiotics have anti-inflammatory effects, and long-term administration may reduce chronic obstructive pulmonary disease (COPD) exacerbations. Objective: To investigate the effects of long-term treatment of macrolide therapy for COPD. Methods: We searched the PubMed and Embase databases to identify randomized controlled trials that evaluated the effect of macrolide therapy (of at least 2 weeks) for COPD. The primary outcome assessed was the frequency of acute exacerbations during follow-up. Results: Six trials involving 1,485 COPD patients were included in the analysis. Analysis of the pooled data of all 6 trials showed that macrolide administration reduced the frequency of acute exacerbations of COPD [risk ratio (RR) = 0.62; 95% CI 0.43-0.89, p = 0.01]. Subgroup analysis showed that only erythromycin might be associated with decreased COPD exacerbations (erythromycin: p = 0.04, azithromycin: p = 0.22, clarithromycin: p = 0.18). Moreover, macrolide therapy for 3 months did not significantly reduce the number of exacerbations (p = 0.18), whereas a beneficial effect was conclusive in the 6-month (p = 0.009) and 12-month (p = 0.03) treatment subgroups. In addition, nonfatal adverse events were more frequent in the macrolide treatment groups than in the controls (RR = 1.32; 95% CI 1.06-1.64, p = 0.01). However, related clinical factors had no influence on the overall result (p = 0.19). There was no publication bias among the included trials. Conclusions: Macrolide therapy was effective and safe in decreasing the frequency of exacerbations in patients with COPD. Treatment might provide a significant benefit but only when therapy lasts more than 6 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.