The road environment prediction is an essential task for intelligent vehicle. In this study, we provide a flexible system that focuses on freespace detection and road environment prediction to host vehicle. The hardware of this system includes two parts: a binocular camera and a low-power mobile platform, which is flexible and portable for a variety of intelligent vehicle. We put forward a multiscale stereo matching algorithm to reduce the computing cost of the hardware unit. Based on disparity space and points cloud, we propose a weighted probability grid map to detect freespace region and a state model to describe the road environment. The experiments show that the proposed system is accurate and robust, which indicates that this technique is fully competent for road environment prediction for intelligent vehicle.
An obstacle perception system for intelligent vehicle is proposed. The proposed system combines the stereo version technique and the deep learning network model, and is applied to obstacle perception tasks in complex environment. In this paper, we provide a complete system design project, which includes the hardware parameters, software framework, algorithm principle, and optimization method. In addition, special experiments are designed to demonstrate that the performance of the proposed system meets the requirements of actual application. The experiment results show that the proposed system is valid to both standard obstacles and non-standard obstacles, and suitable for different weather and lighting conditions in complex environment. It announces that the proposed system is flexible and robust to the intelligent vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.