To elucidate the mechanisms of fruit body development in H. marmoreus, a total of 43609521 high-quality RNA-seq reads were obtained from four developmental stages, including the mycelial knot (H-M), mycelial pigmentation (H-V), primordium (H-P) and fruiting body (H-F) stages. These reads were assembled to obtain 40568 unigenes with an average length of 1074 bp. A total of 26800 (66.06%) unigenes were annotated and analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Eukaryotic Orthologous Group (KOG) databases. Differentially expressed genes (DEGs) from the four transcriptomes were analyzed. The KEGG enrichment analysis revealed that the mycelium pigmentation stage was associated with the MAPK, cAMP, and blue light signal transduction pathways. In addition, expression of the two-component system members changed with the transition from H-M to H-V, suggesting that light affected the expression of genes related to fruit body initiation in H. marmoreus. During the transition from H-V to H-P, stress signals associated with MAPK, cAMP and ROS signals might be the most important inducers. Our data suggested that nitrogen starvation might be one of the most important factors in promoting fruit body maturation, and nitrogen metabolism and mTOR signaling pathway were associated with this process. In addition, 30 genes of interest were analyzed by quantitative real-time PCR to verify their expression profiles at the four developmental stages. This study advances our understanding of the molecular mechanism of fruiting body development in H. marmoreus by identifying a wealth of new genes that may play important roles in mushroom morphogenesis.
The Hypsizygus marmoreus laccase gene (lcc1) sequence was cloned and analyzed. The genomic DNA of lcc1 is 2336 bp, comprising 13 introns and 14 exons. The 1626-bp full-length cDNA encodes a mature laccase protein containing 542 amino acids, with a 21-amino acid signal peptide. Phylogenetic analysis showed that the lcc1 amino acid sequence is homologous to basidiomycete laccases and shares the highest similarity with Flammulina velutipes laccase. A 2021-bp promoter sequence containing a TATA box, CAAT box, and several putative cis-acting elements was also identified. To study the function of lcc1, we first overexpressed lcc1 in H. marmoreus and found that the transgenic fungus producing recombinant laccase displayed faster mycelial growth than the wild-type (wt) strain. Additionally, primordium initiation was induced 3-5 days earlier in the transgenic fungus, and fruiting body maturation was also promoted approximately five days earlier than in the wt strain. Furthermore, we detected that lcc1 was sustainably overexpressed and that laccase activity was also higher in the transgenic strains compared with the wt strain during development in H. marmoreus. These results indicate that the H. marmoreus lcc1 gene is involved in mycelial growth and fruiting body initiation by increasing laccase activity.
As a popular traditional fermented beverage, kombucha has been extensively studied for its health benefits. However, the science behind the anti-inflammatory of kombucha has not been well conducted, and there...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.