Recently, there is considerable work on developing efficient stochastic optimization algorithms for AUC maximization. However, most of them focus on the least square loss which may be not the best option in practice. The main difficulty for dealing with the general convex loss is the pairwise nonlinearity w.r.t. the sampling distribution generating the data. In this paper, we use Bernstein polynomials to uniformly approximate the general losses which are able to decouple the pairwise nonlinearity. In particular, we show that this reduction for AUC maximization with a general loss is equivalent to a weakly convex (nonconvex) min-max formulation. Then, we develop a novel SGD algorithm for AUC maximization with per-iteration cost linearly w.r.t. the data dimension, making it amenable for streaming data analysis. Despite its non-convexity, we prove its global convergence by exploring the appealing convexity-preserving property of Bernstein polynomials and the intrinsic structure of the min-max formulation. Experiments are performed to validate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.