The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films. The CNT/Nafion composite film-modified GC electrodes also exhibited long-term stability.
Here we report the use of fast-scan cyclic voltammetry (FSCV) to study transient collision and immobilization events of single electrocatalytic metal nanoparticles (NPs) on an inert electrode. In this study, a fast, repetitive voltage signal is continuously scanned on an ultramicroelectrode and its faradaic signal is recorded. Electrocatalytically active metal NPs are allowed to collide and immobilize on the electrode resulting in the direct recording of the transient voltammetric response of single NPs. This approach enables one to obtain the transient voltammetric response and electrocatalytic effects of single catalytic NPs as they interact with an inert electrode. The use of FSCV has enabled us to obtain chemical information, which is otherwise difficult to study with previous amperometric methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.