We report the production of tetraploid plants of Platanus acerifolia, with the ultimate aim of improving the ornamental qualities of this important urban landscaping tree. Chromosome doubling was achieved by the application of colchicine to either pre-soaked seed or to the apical meristems of young seedlings. Treatment of the ungerminated seed was the more eYcient method in terms of numbers of tetraploid seedlings (up to 40%, as determined by chromosome counting of the root-tip nuclei) but this method produced no mature tetraploid plants due to the deleterious eVect of colchicine on subsequent root growth. When colchicine was applied directly to the apical growing tip of cotyledon-stage seedlings, leaf and stem growth was temporarily aVected but the plants eventually recovered. We conducted a preliminary screen for putative tetraploids based on the observation in other plant species of a correlation of stomatal size and distribution with ploidy. Plants containing signiWcantly larger stomata and at a lower density across the lower leaf epidermis, were selected for further analysis by Xow cytometry and chromosome counting. These techniques conWrmed that, of the 12 putative polyploids, four were tetraploid, Wve were mixoploid and three were, in fact, diploid. Morphological diVerences of the tetraploids included a more compact growth habit and broader, thicker leaves. These plants are being grown to full maturity in order to test their potential for use in a breeding programme aimed at producing sterile triploid lines.
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.
The WRKY transcription factors are one of the most important plant-specific transcription factors and play vital roles in various biological processes. However, the functions of WRKY genes in wintersweet (Chimonanthus praecox) are still unknown. In this report, a group IIc WRKY gene, CpWRKY71, was isolated from wintersweet. CpWRKY71 was localized to the nucleus and possessed transcriptional activation activity. qRT-PCR (quantitative real-time PCR) analysis showed that CpWRKY71 was expressed in all tissues tested, with higher expression in flowers and senescing leaves. During the flower development, the highest expression was detected in the early-withering stage, an obvious expression of CpWRKY71 was also observed in the flower primordia differentiation and the bloom stage. Meanwhile, the expression of CpWRKY71 was influenced by various abiotic stress and hormone treatments. The expression patterns of the CpWRKY71 gene were further confirmed in CpWRKY71pro:GUS (尾-glucuronidase) plants. Heterologous overexpression of CpWRKY71 in Arabidopsis caused early flowering. Consistent with the early flowering phenotype, the expression of floral pathway integrators and floral meristem identity (FMI) genes were significantly up-regulated in transgenic plants. In addition, we also observed that the transgenic plants of CpWRKY71 exhibited precocious leaf senescence. In conclusion, our results suggested that CpWRKY71 may be involved in the regulation of flowering and leaf senescence in Arabidopsis. Our study provides a foundation for further characterization of CpWRKY genes function in wintersweet, and also enrich our knowledge of molecular mechanism about flowering and senescence in wintersweet.
This study provides a description of EsFUL-like, EsAGL2-1, EsAGL2-2 and EsAGL6-like function divergence and conservation in comparison with a selection of model core eudicots. The study also highlights how organization in genomic segments containing A and E class genes in sequenced model species has resulted in similar topologies of AP1 and SEP-like gene trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.