The Chinese Glioma Cooperative Group (CGCG) Guideline Panel for adult diffuse gliomas provided recommendations for diagnostic and therapeutic procedures. The Panel covered all fields of expertise in neuro-oncology, i.e. neurosurgeons, neurologists, neuropathologists, neuroradiologists, radiation and medical oncologists and clinical trial experts. The task made clearer and more transparent choices about outcomes considered most relevant through searching the references considered most relevant and evaluating their value. The scientific evidence of papers collected from the literature was evaluated and graded based on the Oxford Centre for Evidence-based Medicine Levels of Evidence and recommendations were given accordingly. The recommendations will provide a framework and assurance for the strategy of diagnostic and therapeutic measures to reduce complications from unnecessary treatment and cost. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also as a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China.
Heterostructured photoconductors based on hybrid perovskites and 2D transition-metal dichalcogenides are fabricated and characterized. Due to the superior properties of CH3 NH3 PbI3 and WS2 , as well as the efficient interfacial charge transfer, such photoconductors show high performance with on/off ratio of ≈10(5) and responsivity of ≈17 A W(-1) . Furthermore, the response times of the heterostructured photoconductors are four orders of magnitude faster compared to the counterpart of a perovskite single layer.
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a highquality capacitor structure made of an MAPbBr 3 (CH 3 NH 3 PbBr 3 ) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 10 3 , endurance over 10 3 cycles, and a retention time of 10 4 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr 3 /ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI 3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.