Double-unit trains increase passenger capacity but also increase energy consumption. Therefore, research about the aerodynamic resistance of a double-unit train is of great importance to save energy. In this study, a commercial long-marshalling high-speed train and 8 kinds of double-unit trains are used to investigate the effect of the gap length on aerodynamic resistance. The results show that the aerodynamic resistance of the double-unit train is 8.5%-12.9% larger than that of the long-marshalling train. It is the tail car (CC1 car) of the first single-unit train and the head car (CC2 car) of the second single-unit train that lead to the difference in resistance. For the double-unit trains with different gap length, the resistance increases incrementally with the gap length, which is also mainly caused by the CC1 and CC2 cars. With increases to the gap length (starting from 0 mm), the resistance of the CC1 car increases with the cremental increases in the gap lengths. The resistance of the CC2 car also gradually increases when the gap lengths become larger. The resistance of the CC1 car with a gap length of 0 mm is slightly greater than that with 25 mm.
Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent, and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components. Three different angles for the baffles are −17°, 0° and 17°. Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckle-downstream and knuckle-upstream operating conditions, respectively, which are almost equal and both meet the requirements of the standard EN50367:2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.