Summary Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced ChIA-PET strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CTCF and RNAPII with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes towards CTCF-foci for coordinated transcription. Furthermore, we show that haplotype-variants and allelic-interactions have differential effects on chromosome configuration influencing gene expression and may provide mechanistic insights into functions associated with disease susceptibility. 3D-genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D-genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.
Citrus is a large genus that includes several major cultivated species, including C. sinensis (sweet orange), Citrus reticulata (tangerine and mandarin), Citrus limon (lemon), Citrus grandis (pummelo) and Citrus paradisi (grapefruit). In 2009, the global citrus acreage was 9 million hectares and citrus production was 122.3 million tons (FAO statistics, see URLs), which is the top ranked among all the fruit crops. Among the 10.9 million tons (valued at $9.3 billion) of citrus products traded in 2009, sweet orange accounted for approximately 60% of citrus production for both fresh fruit and processed juice consumption (FAO statistics, see URLs). Moreover, citrus fruits and juice are the prime human source of vitamin C, an important component of human nutrition.Citrus fruits also have some unique botanical features, such as nucellar embryony (nucellus cells can develop into apomictic embryos that are genetically identical to mother plant). Consequently, somatic embryos grow much more vigorously than the zygotic embryos in seeds such that seedlings are essentially clones of the maternal parent. Such citrus-unique characteristics have hindered the study of citrus genetics and breeding improvement 1,2 . Complete genome sequences would provide valuable genetic resources for improving citrus crops.Citrus is believed to be native to southeast Asia 3-5 , and cultivation of fruit crops occurred at least 4,000 years ago 3,6 . The genetic origin of the sweet orange is not clear, although there are some speculations that sweet orange might be derived from interspecific hybridization of some primitive citrus species 7,8 . Citrus is also in the order Sapindales, a sister order to the Brassicales in the Malvidae, making it valuable for comparative genomics studies with the model plant Arabidopsis.We aimed to sequence the genome of Valencia sweet orange (C. sinensis cv. Valencia), one of the most important sweet orange varieties cultivated worldwide and grown primarily for orange juice production. Normal sweet oranges are diploids, with nine pairs of chromosomes and an estimated genome size of ~367 Mb 9 . To reduce the complexity of the sequenced genome, we obtained a doublehaploid (dihaploid) line derived from the anther culture of Valencia sweet orange 10 . We first generated whole-genome shotgun pairedend-tag sequence reads from the dihaploid genomic DNA and built a de novo assembly as the citrus reference genome; we then produced shotgun sequencing reads from the parental diploid DNA and mapped the sequences to the haploid reference genome to obtain the complete genome information for Valencia sweet orange. In addition, we conducted comprehensive transcriptome sequencing analyses for four representative tissues using shotgun RNA sequencing (RNA-Seq) to capture all transcribed sequences and paired-end-tag RNA sequencing (RNA-PET) to demarcate the 5′ and 3′ ends of all transcripts. On the basis of the DNA and RNA sequencing data, we characterized the orange genome for its gene content, heterozygosity and evolutionary features. ...
Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.
Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity1. Stretch- or super-enhancers (SEs) are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease2,3,4,5,6. CD4+ T cells are critical for host defense and autoimmunity. Herein, we analyzed maps of T cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. This notwithstanding, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T cell SE, revealing a network wherein SE-associated genes critical for T cell biology are repressed by BACH2. Disease-associated SNPs for immune-mediated disorders, including rheumatoid arthritis (RA), were highly enriched for T cell-SEs versus typical enhancers (TEs) or SEs in other cell lineages7. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor, tofacitinib, disproportionately altered the expression of RA risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a “guardian” transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.