We introduce the LAMOST Stellar Parameter Pipeline at Peking University -LSP3, developed and implemented for the determinations of radial velocity V r and stellar atmospheric parameters (effective temperature T eff , surface gravity log g, metallicity [Fe/H]) for the LAM-OST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC). We describe the algorithms of LSP3 and examine the accuracy of parameters yielded by it. The precision and accuracy of parameters yielded are investigated by comparing results of multi-epoch observations and of candidate members of open and globular clusters, with photometric calibration, as well as with independent determinations available from a number of external databases, including the PASTEL archive, the APOGEE, SDSS and RAVE surveys, as well as those released in the LAMOST DR1. The uncertainties of LSP3 parameters are characterized and quantified as a function of the spectral signal-to-noise ratio (SNR) and stellar atmospheric parameters. We conclude that the current implementation of LSP3 has achieved an accuracy of 5.0 km s −1 , 150 K, 0.25 dex, 0.15 dex for the radial velocity, effective temperature, surface gravity and metallicity, respectively, for LSS-GAC spectra of FGK stars of SNRs per pixel higher than 10. The LSP3 has been applied to over a million LSS-GAC spectra collected hitherto. Stellar parameters yielded by the LSP3 will be released to the general public following the data policy of LAMOST, together with estimates of the interstellar extinction E(B − V ) and stellar distances, deduced by combining spectroscopic and multi-band photometric measurements using a variety of techniques.
Among hundreds of spinel oxides, LiTi2O4 (LTO) is the only one that exhibits superconductivity (Tc ~13 K). Although the general electron-phonon coupling is still the main mechanism for electron pairing in LTO, unconventional behaviors such as the anomalous magnetoresistance, anisotropic orbital/spin susceptibilities, etc. reveal that both the spin and the orbital interactions should also be considered for understanding the superconductivity. Here, we investigate tunneling spectra of oriented ones, and these modes still exist at T ≈ 2Tc and beyond the upper critical field, which are confirmed as stemming from electron-phonon interaction by DFT calculations. These modes only appear in special surface orientations, indicating that the electron-phonon coupling in LTO system is highly anisotropic and may be enhanced by orbital-related state. The anisotropic electron-phonon coupling should be taken seriously in understanding the nature of LTO superconductivity. I. INTRODUCTIONOxides with spinel structure have attracted a broad attention for their extraordinary features, such as spin fluctuations from frustrated magnetic sublattice [1], charge ordering by mixed valence [2], and orbital ordering [3]. Accordingly, these intriguing properties generate rich functionalities including ferrimagnetism, magnetostriction, multiferroicity, etc [4][5][6]. So far, only a few of spinels show superconductivity, among which LiTi2O4 (LTO) is the only oxide and holds the highest record of superconducting critical transition temperature, i.e. Tc ~ 13 K [7]. Therefore, it is interesting to study the nature of such considerable superconductivity, especially for a complicated system with frustrated Ti-sublattice and equal numbers of Ti 3+ and Ti 4+ ions.
Tsinghua University-Ma Huateng Telescopes for Survey (TMTS), located at Xinglong Station of NAOC, has a field of view up to 18 deg2. The TMTS has started to monitor the LAMOST sky areas since 2020, with the uninterrupted observations lasting for about 6 hours on average for each sky area and a cadence of about 1 minute. Here we introduce the data analysis and preliminary scientific results for the first-year observations, which covered 188 LAMOST plates (≈1970 deg2). These observations have generated over 4.9 million uninterrupted light curves, with at least 100 epochs for each of them. These light curves correspond to 4.26 million Gaia-DR2 sources, among which 285 thousand sources are found to have multi-epoch spectra from the LAMOST. By analysing these light curves with the Lomb-Scargle periodograms, we identify more than 3700 periodic variable star candidates with periods below ≈7.5 hours, primarily consisting of eclipsing binaries and δ Scuti stars. Those short-period binaries will provide important constraints on theories of binary evolution and possible sources for space gravitational wave experiments in the future. Moreover, we also identified 42 flare stars by searching rapidly-evolving signals in the light curves. The densely-sampled light curves from the TMTS allow us to better quantify the shapes and durations for these flares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.