To reduce cadmium (Cd) pollution of food chains, screening and breeding of low-Cd-accumulating cultivars are the focus of much study. Two previously identified genotypes, a low-Cd-accumulating genotype (LAJK) and a high-Cd-accumulating genotype (HAJS) of pakchoi (Brassica chinesis L.), were stressed by Cd (12.5 μM) for 0 h (T0), 3 h (T3) and 24 h (T24). By comparative transcriptome analysis for root tissue, 3005 and 4343 differentially expressed genes (DEGs) were identified in LAJK at T3 (vs T0) and T24 (vs T3), respectively, whereas 8677 and 5081 DEGs were detected in HAJS. Gene expression pattern analysis suggested a delay of Cd responded transcriptional changes in LAJK compared to HAJS. DEG functional enrichments proposed genotype-specific biological processes coped with Cd stress. Cell wall biosynthesis and glutathione (GSH) metabolism were found to involve in Cd resistance in HAJS, whereas DNA repair and abscisic acid (ABA) signal transduction pathways played important roles in LAJK. Furthermore, the genes participating in Cd efflux such as PDR8 were overexpressed in LAJK, whereas those responsible for Cd transport such as YSL1 were more enhanced in HAJS, exhibiting different Cd transport processes between two genotypes. These novel findings should be useful for molecular assisted screening and breeding of low-Cd-accumulating genotypes for pakchoi.
Cadmium (Cd) is a highly toxic heavy metal and has spread widely in the environment in recent decades. This review summarizes current knowledge about Cd contamination of leafy vegetables, its toxicity, exposure, health risks, and approaches to reducing its toxicity in humans. Leafy vegetable consumption has been identified as a dominant exposure pathway of Cd in the human body. An overview of Cd pollution in leafy vegetables as well as the main sources of Cd is given. Notable estimated daily intakes and health risks of Cd exposure through vegetable consumption for humans are revealed in occupational exposure areas and even in some reference areas. Vegetable consumption is one of the most significant sources of exposure to Cd, particularly in occupational exposure regions. Therefore, numerous approaches have been developed to minimize the accumulation of Cd in leafy vegetables, among which the breeding of Cd pollution-safe cultivars is one of the most effective tools. Furthermore, dietary supplements from leafy vegetables perform positive roles in alleviating Cd toxicity in humans with regard to the effects of essential mineral elements, vitamins and phytochemicals taken into the human body via leafy vegetable consumption.
Crops grown in heavy metal contaminated soils are an important avenue for these toxic pollutants entering the human food chain. Information on how crops respond to soil contaminations of single versus multiple metals is scarce and much needed. This study investigated the accumulation of Cd by 24 cultivars of asparagus bean (Vigna unguiculata subsp. Sesquipedalis L., family Fabaceae) under a low level (0.8 mg kg-1) and a high level (11.8 mg kg-1) of Cd exposure in a garden experiment, and that in a field experiment with Cd, Pb, and Zn (1.2, 486, and 1114 mg kg-1, respectively) contaminated soil. Both experiments showed that there were highly significant variations among the tested cultivars in Cd accumulation by roots, stems, leaves, and fruits of asparagus bean. In the garden experiment, all cultivars under the low Cd exposure and 41.7% of the tested cultivars under the high Cd exposure bore fruits (pods) whose Cd concentrations were lower than 0.05 mg kg-1 fw and therefore were safe for consumption. In addition, the fruit Cd concentrations of cultivars with black seed coats were significantly lower than those with red or spotted seed coats. These results suggest that asparagus bean is a hypo-accumulator to Cd pollutant and the trait of Cd accumulation is genetic-dependent among cultivars. In the field experiment, correlation between fruit Cd and Pb concentrations was significantly positive (p < 0.05). Additional correlation analyses between two experiments showed that fruit Cd concentrations in the field experiment were significantly correlated with those exposed to the high level of Cd stress, instead of to the low level of Cd stress in the garden experiment. This suggests that the presence of other toxic heavy metals in the soil might have facilitated the accumulation of Cd in fruits, and the selection of pollution-safe-cultivars (PSC) in multi-metal polluted condition could refer to the PSCs selected under a high level exposure of a single heavy metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.