A high-performance Mg-10Gd-4Dy-1.5Ag-1Zn-0.5Zr (wt.%, EQ142X) alloy was designed by multi-element composite addition in this work, obtaining a high yield strength (~396 MPa) and ultimate tensile strength (~451 MPa) after hot extrusion and ageing. The high strength is mainly related to fine grains and nano-precipitates, especially the latter. β′ and γ″ nano-precipitation with high fractions are the main strengthening phases, leading to a strengthening increment of ~277 MPa. Moreover, the multi-element alloying in this study promotes the basal-prismatic network strengthening structure, composed of β′ nano-precipitation with (1-210) habit planes, γ″ nano-precipitation with (0001) habit planes, basal plane stacking faults and 14H-long period stacking ordered phase. In addition, the dislocations and fine grains introduced by the hot-extrusion process not only accelerate the precipitation rate of nanostructure and thus improve the ageing hardening efficiency, but also facilitate the formation of more uniform and finer nano-precipitation. Thus, it is proposed that introducing nano-precipitates network into fine-grained structure is an effective strategy for developing high-strength Mg alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.