The water and soil environmental vulnerability in arid areas is mainly affected by vegetation, hydrology, terrain, and climate. To accurately evaluate the water and soil environmental vulnerability and its evolution in the Jingtaichuan Pumping Irrigation District in China, this paper, taking 1994, 2006, and 2018 as typical years, selects 13 index factors that directly or indirectly drive the water and soil environmental evolution in this area, and adopts the cloud theory and analytic hierarchy process to determine the weight of each index factor. Spatial analysis technique and supervised classification were used to obtain and standardize the spatial distribution raster maps of each index factor. The multi-source data fusion was performed according to the index weight to analyze the evolution characteristics of soil and water environmental vulnerability. The results showed that soil salinity, vegetation coverage, and land use type have a significant impact on the water and soil environmental vulnerability in this irrigation area, and most of the area is at mild risk. High risk mainly occurs in closed hydrological units in the eastern part of the irrigation area. From 1994 to 2018, the evolution process can be divided into two stages, namely the ‘environmental deterioration stage’ and the ‘environmental restoration stage’. The results showed that the water and soil environment of the irrigation area is developing in a healthy way. HIGHLIGHT In this paper, we use space remote sensing technology with continuous monitoring means. By establishing a set of rating system and a novel evaluation model applicable to the vulnerability of water and soil environment in artificial oases in arid zones. The evolutionary state of soil and water environmental vulnerability of a typical arid zone irrigation area25 is evaluated and analyzed.
Aiming at problems such as inaccurate simulation of groundwater level in closed hydrogeological units, difficult quantitative prediction of soil salinization degree, and unclear water and salt migration, a three-dimensional simulation model of groundwater was established, and the development trend of groundwater level and soil salinization was predicted. The groundwater level simulation results are consistent with the changing trend of the observational data and the simulation model can be used to predict groundwater levels in closed hydrogeological units. When climate scenarios and human activity change are set as future scenarios, the average groundwater buried depth will continue to decrease in the next 10 years, the area with a groundwater buried depth of 0–5 m will exceed 50%, and even the groundwater will overflow to the surface. The change of soil salt content is predicted quantitatively and the salinization degree will develop from ‘saline–alkali soil’ and ‘mild saline–alkali soil’ to ‘medium saline–alkali soil’. The process of water and salt migration in three key hydrologic zones, namely ‘irrigation infiltration’, ‘solute migration’, and ‘water and salt accumulation’, is revealed in the closed hydrogeological unit. The research results can provide new ideas for the improvement of soil and water environment problems such as soil salinization.
To explore the effects of different pressure pipeline layouts on pumping station pipeline vibration, this study establishes an ALGOR numerical model for pipeline flow considering fluid–structure interactions. A data acquisition and signal processing vibration test system is used to obtain vibration signals and verify simulation results including pipeline fluid velocity, fluid pressure, and transient stress. Based on the flow's vibration excitation characteristics, we consider structural vibration reduction technology and propose an optimized design scheme. As an example, we apply this approach to a pressure pipeline at the Ningxia Yanhuanding Pumping Station Project. Results show strong vibrations at the water inlet, the junction between the branch and main pipes, and the water outlet, with even stronger vibration at the inlet than at the outlet. In the optimized design scheme, adjusting the distance between the branch pipes only weakly reduces flow-generated pipeline vibration; increasing the pipe diameter and changing the main pipe's relative orientation show stronger effects. Vibration reduction is optimized for a main pipe dip angle of 2–5° relative to the branch pipes, simultaneously decreasing pumping station energy loss. These results provide a theoretical and practical basis for optimal design of pressure pipelines at high-lift pumping stations. HIGHLIGHT This paper established fluid-structure interaction-based water flow ALGOR numerical model of pressure pipeline in pump station; meanwhile, DASP vibration test system is adopted to acquire the vibration signals to verify the simulation results, analyze the incentive characteristics of pressure pipeline flow form on pipeline vibration and put forward optimized design scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.