The seasonal variation of the chemical composition of the essential oil from fresh leaves of Tetradenia riparia (Hochst.) Codd grown in southern Brazil was analyzed by GC-MS, and the analgesic and antimicrobial activities of this oil were assayed. The yield of essential oil ranged from 0.17% to 0.26%, with the maximum amount in winter and the minimum in spring. The results obtained from principal components analysis (PCA) revealed the existence of high chemical variability in the different seasons. The samples were clearly discriminated into three groups: winter, autumn, and spring-summer. Samples collected during winter contained the highest percentages of calyculone (24.70%), abietadiene (13.54%), and viridiflorol (4.20%). In autumn, the major constituents were ledol (8.74%) and cis-muurolol-5-en-4-α-ol (13.78%). Samples collected in spring-summer contained the highest percentages of fenchone (12.67%), 14-hydroxy-9-epi-caryophyllene (24.36%), and α-cadinol (8.33%). Oxygenated sesquiterpenes were predominant in all the samples analyzed. The observed chemovariation might be environmentally determined by a seasonal influence. The essential oil, when given orally at a dose of 200 mg/kg, exhibited good analgesic activity on acetic acid-induced writhing in mice, inhibiting the constrictions by 38.94% to 46.13%, and this effect was not affected by seasonal variation. The antimicrobial activity of the essential oil against the bacterial strains: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Klebsiella pneumonia, Proteus mirabilis, Morganella morganii, and Enterobacter cloacae, and the pathogenic fungus Candida albicans was assessed by the disc diffusion method and determination of the minimum inhibitory concentration. The results obtained, followed by measurement of the minimum inhibitory concentration (MIC), indicated that S. aureus, B. subtilis, and Candida albicans were the most sensitive microorganisms, showing largest inhibition, and the lowest MIC values varied from 15.6 to 31.2 µg/mL, 7.8 to 15.6 µg/mL, and 31.2 to 62.5 µg/mL, respectively.
This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using diskdiffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.
Tetradenia riparia (Hochstetter) Codd belongs to the Lamiaceae family and it was introduced in Brazil as an exotic ornamental plant. A previous study showed its antimicrobial, acaricidal and analgesic activities. Two compounds were isolated from essential oil of T. riparia leaves and identified as 9β,13β-epoxy-7-abietene (1), a new one, OPEN ACCESSMolecules 2014, 19 515 and 6,7-dehydroroyleanone (2), already reported for another plant. The structure of these compounds was determined by spectroscopic analysis and by comparison with literature data. The cytotoxic activities of the essential oil and compounds 1 and 2 were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and by tumor cells MDA-MB-435 (human breast carcinoma), HCT-8 (human colon), SF-295 (human nervous system) and HL-60 (human promyelocytic leukemia). The essential oil and compound 1 showed high cytotoxic potential of the cell lines SF-295 (78.06% and 94.80%, respectively), HCT-8 (85.00% and 86.54%, respectively) and MDA-MB-435 (59.48% and 45.43%, respectively). Compound 2 had no cytotoxic activity. The antioxidant activity was determined by 2,2-diphenyl-1-picryl-hydrazyl (DPPH), β-carotene-linoleic acid system and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The inhibitory concentration (IC 50 in µg mL −1 ) for essential oil and compound 2 was, respectively 15.63 and 0.01 for DPPH; 130.1 and 109.6 for β-carotenelinoleic acid and 1524 and 1024 for ABTS. Compound 1 had no antioxidant activity. By fractioning the oil, it was possible to identify two unpublished compounds: 1 with high cytotoxic potential and 2 with high antioxidant potential.
Baccharis dracunculifolia DC (Asteraceae) is a Brazilian native bush tree, and its leaf essential oil has been reported to possess some biological activities, but the antimicrobial activity of its aerial part essential oil at the flowering period is unknown or little studied, mainly against agents that cause foodborne diseases. Thus, this study aimed to determine the chemical composition and evaluate the antimicrobial activity of the essential oil of B. dracunculifolia aerial part at flowering period. This essential oil was obtained by hydro distillation and its chemical composition was determined by gas chromatography coupled with mass spectrometry (GC–MS). The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration of the essential oil were evaluated against eight bacteria and eight fungi using 96-well microtiter plates. The essential oil yield was 1.8 ± 0.07%, and spathulenol (27%) and trans-nerolidol (23%), both oxygenated sesquiterpenes, were the major compounds found among 30 chemical constituents identified. The essential oil presented bacteriostatic and bactericidal activities, mainly against Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa, and also fungistatic and fungicidal activities. However, its antibacterial activity was more effective than the antifungal one by using the essential oil at lower concentrations. Essential oil of B. dracunculifolia may be a potential alternative for food applications in order to reduce synthetic chemicals in a more sustainable food industry.
Tetradenia riparia plant is used as a traditional medicine in Africa for the treatment of inflammatory and infectious diseases as like parasitic. Therapy for leishmaniasis caused by Leishmania (Leishmania) amazonensis specie often fails, and the conventional drugs are toxic, expensive, require a long period of treatment, and adverse effects are common. The alternative therapies using natural products are inexpensive and have few or any adverse reaction. These reasons are sufficient to investigate the new natural therapeutic for leishmaniasis. We evaluated the potential of the essential oil (TrEO) and 6,7-dehydroroyleanone (TrROY) isolated from T. riparia on L. (L.) amazonensis promastigote and amastigote forms, cytotoxicity on human erythrocytes and murine macrophages, nitric production and inducible nitric oxide synthase (iNOS) mRNA expression. TrEO was the most effective to promote the Leishmania promastigote death. After 72 h incubation, the lethal dose of TrEO and TrROY that promoted 50% Leishmania death (LD50) were 0.8 μg/mL and 3 μg/mL, respectively. TrEO and TrROY were not cytotoxic to human erythrocytes, but TrROY was toxic to murine macrophages resulting in a low selectivity index. The transmission electronic microscopy showed that TrEO (0.03 μg/mL) was able to modify the promastigote ultrastructures suggesting autophagy as chromatin condensation, blebbing, membranous profiles and nuclear fragmentation. Infected-macrophages treated with TrEO (0.03 μg/mL) or TrROY (10 μg/mL) had an infection index decreased in 65 and 48%. TrEO did not induce iNOS mRNA expression or nitrite production in macrophages infected with Leishmania. TrROY and mainly TrEO promoted the Leishmania death, and TrROY showed loss toxicity to erythrocytes cells. Other compounds derived from T. riparia and the essential oil could be explored to develop a new alternative treatment for leishmaniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.