A fundamental challenge for bioelectronics is to deliver power to miniature devices inside the body. Wires are common failure points and limit device placement. Wireless power by electromagnetic or ultrasound waves must overcome absorption by the body and impedance mismatches between air, bone, and tissue. Magnetic fields, on the other hand, suffer little absorption by the body or differences in impedance at interfaces between air, bone, and tissue. These advantages have led to magnetically-powered stimulators based on induction or magnetothermal effects. However, fundamental limitations in these power transfer technologies have prevented miniature magneticallypowered stimulators from applications in many therapies and disease models because they do not operate in clinical "high-frequency" ranges above 20 Hz. Here we show that magnetoelectric materials -applied for the first time in bioelectronics devices -enable miniature magnetically-powered neural stimulators that operate at clinically relevant high-frequencies. As an example, we show that ME neural stimulators can effectively treat the symptoms of a Parkinson's disease model in a freely behaving rodent. We also show that ME-powered devices can be miniaturized to sizes smaller than a grain of rice while maintaining effective stimulation voltages. These results suggest that ME materials are an excellent candidate for wireless power delivery that will enable miniature neural stimulators in both clinical and research applications. Wireless neural stimulators have the potential to provide less invasive, longer lasting interfaces to brain regions and peripheral nerves compared to batterypowered devices or wired stimulators. Indeed, wires are a common failure point for bioelectronic devices. Percutaneous wires present a pathway for infection 1 and implanted wires can also limit the ability of the stimulators to move with the tissue, leading to a foreign body response or loss of contact with the target tissue 2,3 . Additionally, chronic stress and strain on wires, particularly for devices in the periphery, can lead to failure in the wire itself or its connection to the stimulator 4 . In small animals like rats and mice, wires used to power neural stimulators can interfere with natural behavior, particularly when studying social interaction between multiple animals 5 .
Aims Calcific aortic valve disease (CAVD) is the most common heart valve disease in the Western world. It has been reported that zinc is accumulated in calcified human aortic valves. However, whether zinc directly regulates CAVD is yet to be elucidated. The present study sought to determine the potential role of zinc in the pathogenesis of CAVD. Methods and results Using a combination of a human valve interstitial cell (hVIC) calcification model, human aortic valve tissues, and blood samples, we report that 20 μM zinc supplementation attenuates hVIC in vitro calcification, and that this is mediated through inhibition of apoptosis and osteogenic differentiation via the zinc-sensing receptor GPR39-dependent ERK1/2 signalling pathway. Furthermore, we report that GPR39 protein expression is dramatically reduced in calcified human aortic valves, and there is a significant reduction in zinc serum levels in patients with CAVD. Moreover, we reveal that 20 μM zinc treatment prevents the reduction of GPR39 observed in calcified hVICs. We also show that the zinc transporter ZIP13 and ZIP14 are significantly increased in hVICs in response to zinc treatment. Knockdown of ZIP13 or ZIP14 significantly inhibited hVIC in vitro calcification and osteogenic differentiation. Conclusions Together, these findings suggest that zinc is a novel inhibitor of CAVD, and report that zinc transporter ZIP13 and ZIP14 are important regulators of hVIC in vitro calcification and osteogenic differentiation. Zinc supplementation may offer a potential therapeutic strategy for CAVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.