Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m 2 /g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.
Commonly known as a skin pigment, melanin has a vital role in UV radiation protection, primarily acting as a radical scavenger. However, a lesser known natural property of melanin, observed in some melanized organisms, is its capacity to adsorb toxins, including metals and organic molecules. Inspired by this, we set out to generate a synthetic porous melanin that would pave the way to enhancing the natural adsorbent properties of melanin and melanin-like materials. Here, we developed a method for the synthesis of porous polydopamine-based melanin utilizing a mesoporous silica (MS) nanoparticle template and characterized its physical properties. Through the oxidative polymerization of dopamine, followed by the etching of silica, we generated synthetic porous melanin (SPM) with the highest measured surface area of any known polydopamine-based material. The prepared SPM was effective for the uptake of various gases and organophosphate toxins, with the material exhibiting high selectivity for CO 2 over CH 4 and high potential for ammonia capture. Given the demonstrated advantages provided by synthetic porous melanin and melanin's role as an adsorbent in nature, we anticipate the discovery of porous analogues in biological systems.
Herein, a synthetic polymer proteomimetic is described that reconstitutes the key structural elements and function of mussel adhesive protein. The proteomimetic was prepared via graft-through ring-opening metathesis polymerization of a norbornenyl-peptide monomer. The peptide was derived from the natural underwater glue produced by marine mussels that is composed of a highly repetitive 10 amino acid tandem repeat sequence. The hypothesis was that recapitulation of the repeating unit in this manner would provide a facile route to a nature-inspired adhesive. To this end, the material, in which the arrangement of peptide units was as side chains on a brush polymer rather than in a linear fashion as in the natural protein, was examined and compared to the native protein. Mechanical measurements of adhesion forces between solid surfaces revealed improved adhesion properties over the natural protein, making this strategy attractive for diverse applications. One such application is demonstrated, using the polymers as a surface adhesive for the immobilization of live cells.
Allomelanin is a class of nitrogen-free melanin mostly found in fungi and, like all naturally occurring melanins, is hydrophilic. Herein, we develop a facile method to modify synthetic hydrophilic allomelanin to yield hydrophobic derivatives through post-synthetic modifications. Amine-functionalized molecules of various kinds can be conjugated to allomelanin nanoparticles under mild conditions with high loading efficiencies. Hydrophobicity is conferred by introducing amine-terminated alkyl groups with different chain lengths. We demonstrate that the resulting hydrophobic allomelanin nanoparticles undergo air/water interfacial self-assembly in a controlled fashion, which enables the generation of large-scale and uniform structural colors. This work provides an efficient and tunable surface chemistry modification strategy to broaden the scope of synthetic melanin structure and function beyond the known diversity found in nature.
High catalytic activity and substrate specificity make enzymes a rich source of inspiration for catalyst development. Co-opting the advantages of natural materials while tuning them to a modified form and purpose, however, is not a straightforward synthetic task. Polymerization of L-3,4-dihydroxyphenylalanine (L-DOPA) results in amorphous polymer nanoparticles that are similar in many ways to natural eumelanin. Herein, the authors introduce mesoporosity and iron ion chelation to synthesize a variant of the L-DOPA polymer with high peroxidase-like activity. Our results indicate catalytic reaction with peroxide under mildly acidic conditions (pH 5.4 and 6) with a greater maximum reaction velocity (V max ) than horseradish peroxidase (HRP) at optimal pH 3.5-4.5. Comparison between Fe(III) and Fe(II) loading indicates that either can be used as a starting point to trigger reactivity, though Fe(II) loading leads to materials with twice the V max of the Fe(III)-loaded sample. The lack of catalyst degradation despite the redox changes and presence of radical species is consistent with the robust nature and redox versatility of polydopamine-based materials and demonstrates strong potential as a versatile redox-catalysis platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.