Mitochondrial ferritin (FtMt) is a novel ferritin that is localized in the mitochondria. FtMt expression is low in the liver and spleen, and high in the heart, testis, and brain. We previously detected FtMt in dopaminergic neurons in the substantia nigra pars compacta (SNc) in human and monkey midbrains. We investigated the localization and expression of FtMt in the midbrain of patients with progressive supranuclear palsy (PSP) and controls using a monoclonal antibody (C65-2) against human FtMt. FtMt immunoreactivity was weakly detected in neuromelanin-containing neurons in the SNc and ventral tegmental area (VTA) of control cases compared with PSP, which exhibited a remarkable increase in FtMt immunoreactivity. Preincubation of C65-2 with the immunizing FtMt peptide significantly reduced the staining, indicating the specificity of C65-2. Several puncta were observed outside the neurons of PSP, in contrast with the control cases. Double immunofluorescence histochemistry for FtMt and tyrosine hydroxylase (TH), glial fibrillary acidic protein, and Iba1 showed localization of FtMt in dopaminergic neurons, microglia, and astrocytes in PSP. Furthermore, FtMt immunoreactivity was detected in a few TH-negative neurons. In the SNc and VTA, FtMt immunoreactivity colocalized with phosphorylated tau immunoreactivity. Our results indicate that FtMt is involved in the pathology of PSP. Clarifying the involvement of FtMt in PSP is of great interest.
Background: Many studies on biochemical and psychological variables have aimed to elucidate the association between aging and cognitive function. Demographic differences and protein expression have been reported to play a role in determining the cognitive capability of a population. Objective: This study aimed to determine the effect of age on the protein profile of Malay individuals and its association with cognitive competency. Methods: A total of 160 individuals were recruited and grouped accordingly. Cognitive competency of each subject was assessed with several neuropsychological tests. Plasma samples were collected and analyzed with Q Exactive HF Orbitrap. Proteins were identified and quantitated with MaxQuant and further analyzed with Perseus to determine differentially expressed proteins. PANTHER, Reactome, and STRING were applied for bioinformatics output. Results: Our data showed that the Malay individuals are vulnerable to the deterioration of cognitive function with aging, and most of the proteins were differentially expressed in concordance. Several physiological components and pathways were shown to be involved, giving a hint of a promising interpretation on the induction of aging toward the state of the Malays’ cognitive function. Nevertheless, some proteins have shown a considerable interaction with the generated protein network, which provides a direction of focus for further investigation. Conclusion: This study demonstrated notable changes in the expression of several proteins as age increased. These changes provide a promising platform for understanding the biochemical factors affecting cognitive function in the Malay population. The exhibited network of protein-protein interaction suggests the possibility of implementing regulatory intervention in ameliorating Malay cognitive function.
Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult’s susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.