We demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Under visible illumination, we observe enhancements of up to 66× in the photocatalytic splitting of water in TiO2 with the addition of Au nanoparticles. Above the plasmon resonance, under ultraviolet radiation we observe a 4-fold reduction in the photocatalytic activity. Electromagnetic simulations indicate that the improvement of photocatalytic activity in the visible range is caused by the local electric field enhancement near the TiO2 surface, rather than by the direct transfer of charge between the two materials. Here, the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photogenerated charge contributing to catalysis. This mechanism of enhancement is particularly effective because of the relatively short exciton diffusion length (or minority carrier diffusion length), which otherwise limits the photocatalytic performance. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized.
High-aspect-ratio sub-15-nm silicon trenches are fabricated directly from plasma etching of a block copolymer mask. A novel method that combines a block copolymer reconstruction process and reactive ion etching is used to make the polymer mask. Silicon trenches are characterized by various methods and used as a master for subsequent imprinting of different materials. Silicon nanoholes are generated from a block copolymer with cylindrical microdomains oriented normal to the surface.
Ferromagnetic cobalt nanowires with high‐crystalline quality are synthesized using a low‐voltage electrodeposition method. High‐resolution transmission electron microscopy (HRTEM) and X‐ray diffraction (XRD) results show that the nanowires are uniform in size, and consist of predominantly hexagonal close‐packed (hcp) structure with the magnetocrystalline easy axis (c‐axis) perpendicular to the wire axis. Superconducting quantum interference device (SQUID) measurements illustrate the dominance of shape anisotropy, manifested by the weak temperature dependence of the enhanced coercive field along the wire axis. Furthermore, the magnetic structures of individual, segmented, or intersected nanowires are studied using magnetic force microscopy. This reveals a strong dipole at the two ends of the wire, together with a spatial magnetization modulation along the wire. Based on theoretical modeling, such intrinsic modulation is attributed to magnetization frustration due to the competition between the magnetocrystalline polarization along the easy axis and the shape anisotropy along the wire axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.