TDP-43 is a primarily nuclear RNA-binding protein, whose abnormal phosphorylation and cytoplasmic aggregation characterizes affected neurons in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Here, we report that physiological nuclear TDP-43 in mouse and human brain forms homo-oligomers that are resistant to cellular stress. Physiological TDP-43 oligomerization is mediated by its N-terminal domain, which can adopt dynamic, solenoid-like structures, as revealed by a 2.1 Å crystal structure in combination with nuclear magnetic resonance spectroscopy and electron microscopy. These head-to-tail TDP-43 oligomers are unique among known RNA-binding proteins and represent the functional form of the protein in vivo, since their destabilization results in loss of alternative splicing regulation of known neuronal RNA targets. Our findings indicate that N-terminal domain-driven oligomerization spatially separates the adjoining highly aggregation-prone, C-terminal low-complexity domains of consecutive TDP-43 monomers, thereby preventing low-complexity domain inter-molecular interactions and antagonizing the formation of pathologic aggregates.
Accumulation of abnormally phosphorylated TDP-43 (pTDP-43) is the main pathology in affected neurons of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Morphological diversity and neuroanatomical distribution of pTDP-43 accumulations allowed classification of FTD cases into at least four different subtypes, which correlate with clinical presentations and genetic causes. To understand the molecular basis of this heterogeneity, we developed SarkoSpin, a new method for extremely pure biochemical isolation of pathological TDP-43. Combining SarkoSpin with mass spectrometry, we revealed proteins beyond TDP-43, which become abnormally insoluble in a disease subtype-specific manner. We show that pTDP-43 extracted from disease brain forms large and stable assemblies of distinct densities and morphologies that correlate with disease subtypes. Importantly, biochemically extracted pTDP-43 assemblies displayed differential neurotoxicity and seeding that correlated with disease duration of FTLD patients. Our data indicate that disease heterogeneity may originate from alternate pathological TDP-43 conformations, reminiscent of prion strains. 5 developed SarkoSpin, a novel and simple extraction method for physical separation of pathological TDP-43 from more than 99% of total protein mass including the extreme bulk of physiological, monomeric and oligomeric 11 TDP-43. Using SarkoSpin on brain cortical samples from over 80 patients, we found that TDP-43 forms large and buoyant assemblies of distinct densities, polyubiquitination levels and morphologies that correlate with specific neuropathological classifications. Importantly, coupling SarkoSpin with mass spectrometry, we illustrate that a specific subset of proteins, beyond TDP-43, become insoluble in each disease subtype. These proteins are rarely co-aggregated with pTDP-43 and most likely represent a downstream effect of TDP-43 pathology. One of these proteins depicts a distinct astrocytic reaction discriminating FTLD-TDP-A from FTLD-TDP-C patients, illustrating divergent pathogenic mechanisms within these two disease subtypes. Most importantly, we show evidence that SarkoSpin extracted pTDP-43 assemblies exhibit cytotoxicity and protein seeding ability. Remarkably, pathological aggregates extracted from FTLD-TDP-A were significantly more cyto-and neurotoxic than those extracted from FTLD-TDP-C, thereby correlating with the significant difference in disease duration between these two subtypes. Collectively, our data demonstrate that ALS and FTLD heterogeneity is consistently reflected in the biochemical, neurotoxic and seeding properties of TDP-43 and the associated insoluble proteome. We propose that alternative TDP-43 pathological conformations may underlie the diversity of TDP-43 proteinopathies, reminiscent of prion strains 33,34. Results Summary of patient cohort and characterization of FTLD-TDP-A and FTLD-TDP-C cases Brain cortical samples from over 80 patients, including control patients with no apparent CNS pathology or with non-TDP...
The primarily nuclear RNA-binding protein FUS (fused in sarcoma) forms pathological cytoplasmic inclusions in a subset of early-onset amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. In response to cellular stress, FUS is recruited to cytoplasmic stress granules, which are hypothesized to act as precursors of pathological inclusions. We monitored the stress-induced nucleocytoplasmic shuttling of endogenous FUS in an ex vivo mouse CNS model and human neural networks. We found that hyperosmolar, but not oxidative, stress induced robust cytoplasmic translocation of neuronal FUS, with transient nuclear clearance and loss of function. Surprisingly, this reaction is independent of stress granule formation and the molecular pathways activated by hyperosmolarity. Instead, it represents a mechanism mediated by cytoplasmic redistribution of Transportin 1/2 and is potentiated by transcriptional inhibition. Importantly, astrocytes, which remain unaffected in ALS/FTD-FUS, are spared from this stress reaction that may signify the initial event in the development of FUS pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.