A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10(-6).
We present a high-sensitivity technique for time-resolved imaging of millimeter waves (MMWs) using the visible continuum (VC) from the positive column (PC) of a medium-pressure Cs–Xe dc discharge. For the MMW imaging application, a uniform plasma slab of the PC of a Cs–Xe discharge with 10×8 cm2 aperture and 2 cm in thickness was generated for 45 Torr xenon. The imaging technique is based on the fact that the intensity of the e-Xe bremsstrahlung continuum from the PC increases in the visible region when the electrons in the plasma are heated by MMWs. It is shown that in the MMW intensity range from zero to the threshold of the microwave-induced plasma breakdown, the intensity of the VC from the PC of a Cs–Xe discharge increases approximately as a second-order polynomial function of the MMW intensity. The obtained experimental data agree well with our calculations of the dependence of the VC intensity on electron temperature. The Ka-band MMW field patterns at the output of conical horn antennas and in the quasioptical beam were imaged using the discharge technique. It is shown that the technique can be used for time-resolved measurement of the profiles of watt- and subwatt-level MMWs. An energy flux sensitivity of the technique of about 10 μJ/cm2 in the Ka-band was demonstrated. The temporal resolution of the technique is about 0.8 μs. Our modeling of the transient behavior of the electron temperature in the PC shows that the time history of the electron temperature variation coincides well with the measured time history of the VC intensity variation.
A 250 GHz continuous-wave (CW) gyrotron has been developed at the IAP RAS jointly with GYCOM Ltd., as a prototype of the microwave source for the envisaged prospective nuclear fusion power plants (DEMO). The main applications of such a tube are electron cyclotron resonance heating and electron cyclotron resonance current drive of magnetically confined plasma as well as its diagnostics based on collective Thomson scattering in various reactors for controlled thermonuclear fusion (e.g., tokamaks and stellarators). The results of the preliminary experimental tests in a pulsed mode of operation are presented. The microwave power of up to 330 kW with an efficiency of 30% without collector depression was obtained. At an accelerating voltage of 55 kV and an electron beam current of 12.5 A (which corresponds to the design parameters for CW operation), the measured output power was about 200 kW. The TEM mode content evaluated at the tube output is not less than 98.6%.
The cranked Skyrme III effective Hamiltonian is applied for the analysis of the rotational dependence of the quadrupole and octupole moments in Ra, Th and U isotopes. A comparison of the intrinsic electric dipole moments calculated in the model with available experimental and theoretical values is presented. It is found that the non-axial octupole deformation Y32 becomes favourable at high spins for the actinide nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.