Aging of composites is a pervasive problem that leads to mechanical properties degradation, reduced design life of a structure and premature accidental failure. The work is devoted to an experimental study of the preliminary temperature aging effect on the residual mechanical properties of structural CFRP. The joint use of test systems and systems for registration and analysis of acoustic emission signals was applied. The Short Beam Shear Test of CFRP specimens were carried out using the short beam method. The tests were carried out on universal electromechanical systems Instron 5882 and Instron 5965 in accordance with the recommendations of ASTM D2344. In the process of loading the samples were continuously recorded by using the acoustic emission signals system AMSY-6. A piezoelectric sensor with a frequency range of 300-800 kHz was used. The test and diagnostic systems were synchronized during the tests. In the course of the work the values of the interlayer shear strength were determined for the samples of CFRP. Typical types of the sample destruction are illustrated. When analyzing the change in the mechanical properties of the carbon fiber reinforced plastic from a temperature increase the critical values of temperatures were established in which a sharp decline in the strength and elastic characteristics of materials occurs due to an active destruction of the binder. The graphs of the energy parameter dependence and frequency characteristics of acoustic emission signals on time have been constructed and analyzed. The estimate of the processes of damage accumulation in composites is carried out. The change of the damage accumulation mechanisms was illustrated. The obtained results illustrate the effect of elevated temperatures and the duration of their impact on the mechanical behavior of structural CFRP specimens during the static tests for the interlayer shear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.