The impact of alkyl side‐chain substituents on conjugated polymers on the photovoltaic properties of bulk heterojunction (BHJ) solar cells has been studied extensively, but their impact on small molecules has not received adequate attention. To reveal the effect of side chains, a series of star‐shaped molecules based on a triphenylamine (TPA) core, bithiophene, and dicyanovinyl units derivatized with various alkyl end‐capping groups of methyl, ethyl, hexyl and dodecyl is synthesiyed and studied to comprehensively investigate structure‐properties relationships. UV‐vis absorption and cyclic voltammetry data show that variations of alkyl chain length have little influence on the absorption and highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) levels. However, these seemingly negligible changes have a pronounced impact on the morphology of BHJ thin films as well as their charge carrier separation and transportation, which in turn influences the photovoltaic properties of these small‐molecule‐based BHJ devices. Solution‐processed organic solar cells (OSCs) based on the small molecule with the shortest methyl end groups exhibit high short circuit current (Jsc) and fill factor (FF), with an efficiency as high as 4.76% without any post‐treatments; these are among the highest reported for solution‐processed OSCs based on star‐shaped molecules.
Length of the terminal alkyl chains at dicyanovinyl (DCV) groups of two dithienosilole (DTS) containing small molecules (DTS(Oct)2‐(2T‐DCV‐Me)2
and DTS(Oct)2‐(2T‐DCV‐Hex)2
) is investigated to evaluate how this affects the molecular solubility and blend morphology as well as their performance in bulk heterojunction organic solar cells (OSCs). While the DTS(Oct)2‐(2T‐DCV‐Me)2
(a solubility of 5 mg mL−1) system exhibits both high short circuit current density (J
sc) and high fill factor, the DTS(Oct)2‐(2T‐DCV‐Hex)2
(a solubility of 24 mg mL−1) system in contrast suffers from a poor blend morphology as examined by atomic force morphology and grazing incidence X‐ray scattering measurements, which limit the photovoltaic properties. The charge generation, transport, and recombination dynamics associated with the limited device performance are investigated for both systems. Nongeminate recombination losses in DTS(Oct)2‐(2T‐DCV‐Hex)2
system are demonstrated to be significant by combining space charge limited current analysis and light intensity dependence of current–voltage characteristics in combination with photogenerated charge carrier extraction by linearly increasing voltage and transient photovoltage measurements. DTS(Oct)2‐(2T‐DCV‐Me)2
in contrast performs nearly ideal with no evidence of nongeminate recombination, space charge effects, or mobility limitation. These results demonstrate the importance of alkyl chain engineering for solution‐processed OSCs based on small molecules as an essential design tool to overcome transport limitations.
and fill factor (FF). The study demonstrates that such an approach can represent an interesting tool for the effective modulation of the photovoltaic properties of the organic solar cells (OSCs) at a moderate cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.