It is well-known that interaction of hydrophobic powders with water is weak, and upon mixing, they typically form separated phases. Preparation of hydrophobic nanosilica AM1 with a relatively large content of bound water with no formation of separated phases was the aim of this study. Unmodified nanosilica A-300 and initial AM1 (A-300 completely hydrophobized by dimethyldichlorosilane), compacted A-300 (cA-300), and compacted AM1 (cAM1) containing 50-58 wt % of bound water were studied using low-temperature H NMR spectroscopy, thermogravimetry, infrared spectroscopy, microscopy, small-angle X-ray scattering, nitrogen adsorption, and theoretical modeling. After mechanical activation (∼20 atm) upon stirring of AM1/water mixture at the degree of hydration h = 1.0 or 1.4 g of distilled water per gram of dry silica, all water is bound and the blend has the bulk density of 0.7 g/cm. The temperature and interfacial behaviors of bound water depend strongly on a dispersion media type (air, chloroform, and chloroform with trifluoroacetic acid (4:1)) because the boundary area between immiscible water and chloroform should be minimal. Water and chloroform molecules are of different sizes affecting their distribution in pores (voids between silica nanoparticles in their aggregates) of different sizes. Structural, morphological, and textural characteristics of silicas, and environmental features affect not only the distribution of bound water, but also the amounts of strongly (frozen at T < 260 K) and weakly (frozen at 260 K < T < 273 K) bound and strongly (chemical shift δ = 4-6 ppm) and weakly (δ = 1-2 ppm) associated waters. Despite the changes in the characteristics of cAM1, it demonstrates a flotation effect. The developed system with cAM1/bound water could be of interest from a practical point of view due to controlled interactions with aqueous surroundings.
Polymethylsiloxane (PMS) and fumed silica, alone and in a blended form (1:1 w/w), differently pretreated, hydrated, and treated again, were studied using TEM and SEM, nitrogen adsorption–desorption, 1H MAS and 29Si CP/MAS NMR spectroscopy, infrared spectroscopy, and methods of quantum chemistry. Analysis of the effects of adding water (0–0.5 g of water per gram of solids) to the blends while they are undergoing different mechanical treatment (stirring with weak (~1–2 kg/cm2) and strong (~20 kg/cm2) loading) show that both dry and wetted PMS (as a soft material) can be grafted onto a silica surface, even with weak mechanical loading, and enhanced mechanical loading leads to enhanced homogenization of the blends. The main evidence of this effect is strong nonadditive changes in the textural characteristics, which are 2–3 times smaller than additive those expected. All PMS/nanosilica blends, demonstrating a good distribution of nanosilica nanoparticles and their small aggregates in the polymer matrix (according to TEM and SEM images), are rather meso/microporous, with the main pore-size distribution peaks at R > 10 nm in radius and average <RV> values of 18–25 nm. The contributions of nanopores (R < 1 nm), mesopores (1 nm < R < 25 nm), and macropores (25 nm < R < 100 nm), which are of importance for studied medical sorbents and drug carriers, depend strongly on the types of the materials and treatments, as well the amounts of water added. The developed technique (based on small additions of water and controlled mechanical loading) allows one to significantly change the morphological and textural characteristics of fumed silica (hydrocompaction), PMS (drying–wetting–drying), and PMS/A-300 blends (wetting–drying under mechanical loading), which is of importance from a practical point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.