Introduction. Acousto-optic spectrum analyzers interferometric schemes have been developed to increase dynamic range. It was assumed that dynamic range, expressed in dB, would double. An expected increase was not achieved yet.Aim. To analyze the homodyne acousto-optic spectrum analyzer noise characteristics, to estimate the signal-tonoise ratio and the dynamic range.Materials and methods. A mathematical model was compiled which took into account the need to form quadrature components to obtain an amplitude spectrum of an input signal, shot noise and readout noise.Results. An interferometric scheme did not allow to achieve dynamic range doubling compared to an acoustooptical power spectrum analyzer. The dynamic range increase was less than 1.35 dB. Constant illumination led to a significant increase of the spectrum analyzer self-noise due to shot noise, compared to which thermal noise and readout noise became insignificant. The spurious-free dynamic range estimation expression was obtained. It was prior determined by acousto-optic interaction nonlinearity. With typical analyzer blocks parameters the spurious-free dynamic range covered a single-signal dynamic range. Signal-to-noise ratio estimation expression was presented.Conclusion. The homodyne acousto-optic spectrum analyzer single-signal dynamic range is determined primarily by the photosensor saturation charge. One needs to optimize their relation by taking into account light source power, acousto-optical modulator diffraction efficiency and photosensor saturation charge. Presented noise model gives more accurate estimation of the dynamic range with an error of 1 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.