Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus have been widely used in folk medicine for several inflammatory disorders in Korea and China. In this study, we compared the anti-inflammatory effects of the ethanol extracts of S. flavescens (EESF), G. uralensis (EEGU) and D. dasycarpus (EEDS), and their mixtures (medicinal herber mixtures, MHMIXs) on production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. Our data indicated that treatment with EESF, EEGU and EEDD significantly inhibited the excessive production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated RAW 264.7 cells. The ethanol extracts and MHMIXs also attenuated the production of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) by suppressing their protein expression, respectively. Interestingly, MHMIX-1, which basic ingredients are EESF, EEGU and EEDS in the proportion 3:1:1, more safely and effectively inhibits the LPS-induced inflammatory status in LPS-stimulated RAW 264.7 macrophages compared to ethanol extracts of each medicinal herb and other MHMIXs without causing any cytotoxic effects. Our study provides scientific evidence to support that a berbal mixture, MHMIX-1 may be useful in the treatment of inflammatory diseases by inhibiting inflammatory regulator responses in activated macrophages.
Muscle atrophy, known as a sarcopenia, is defined as a loss of muscle mass resulting from a reduction in the muscle fiber area or density due to a decrease in muscle protein synthesis and an increase in protein breakdown. Schisandrae fructus (SF) extract of the fruits of Schisandra chinensis (Turcz) Baillon has been used as a tonic in traditional medicine for thousands of years. Although a great deal of work has been carried out on the therapeutic potential of SF, its pharmacological mechanisms of action in muscle diseases actions remain unclear. In the present study, we investigated the inhibitory effects of SF ethanol extracts on the production of muscle atrophy factors in C2C12 myotubes stimulated with 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR), an AMP-activated kinase (AMPK) activator, and sought to determine the underlying mechanisms of action. AICAR upregulated atrophy-related ubiquitin ligase muscle RING finger-1 (MuRF-1) and stimulated the levels of the forkhead box O3a (FoxO3a) transcription factor in the C2C12 myotubes. SF supplementation effectively and concentration-dependently counteracted AICAR-induced muscle cell atrophy and reversed the increased expression of MuRF-1 and FoxO3a. Our study demonstrates that SF can reverse the muscle cell atrophy caused by AICAR through regulation of the AMPK and FoxO3a signaling pathways, followed by inhibition of MuRF-1.Key words : AICAR (5-aminoimidazole-4-carboxamide-ribonucleotide), FoxO3a (forkhead box O3a), muscle atrophy, MuRF-1 (muscle RING finger-1), Schisandrae Fructus
Citrus peel (CP) is used as a traditional herb with diverse beneficial pharmacological activities, such as anti-inflammatory, anti-oxidant, and anti-allergic effects. However, the anti-obesity effects of citrus peel are poorly defined. The aim of this study was to evaluate ethanol extracts of citrus peel (EECP) for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. The aim of this study was to evaluate an EECP for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. Treatment with EECP significantly suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet number and lipid content and an accumulation of cellular triglyceride. EECP exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory elementbinding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancerbinding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Leptin. In addition, EECP treatment effectively activated the AMP-activated protein kinase (AMPK) signaling pathway; however, compound C, a specific inhibitor of AMPK, significantly reduced the EECP-induced inhibition of adipogenesis. Taken together, these results indicate EECP showed strong anti-obesity effects through the AMPK signaling pathway, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of EECP.
Citri Pericarpium is one of the most commonly used traditional herbal medicines in Korea, China, and Japan. Its extracts have many properties including the treatment of indigestion and inflammatory respiratory syndromes such as bronchitis and asthma. However, the underlying molecular mechanisms of anti-cancer activity and molecular targets are not fully understood. In this work, we investigated the anti-proliferative activity of Citri Pericapium (EMCP) methanol extract on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death using U937 human leukemia cells in vitro. EMCP treatment decreased cell proliferation in a dose-dependent manner following an increase of the sub-G1 phase, the down-regulation of Bax proteins, the activation of caspases, the degradation of poly (ADP-ribose) polymerase proteins (PARP), and the induction of ROS generation. However, the quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the EMCP-induced apoptosis effects. In addition, heme oxygenase-1 expression also recovered by inhibiting the nuclear translocation of phosphorylated NF-E2-related factor 2. Taken together, our data indicate that ROS are involved as key mediators in the early molecular events in the EMCP-induced apoptotic pathway.
The objective of this study was to evaluate the anti-melanogenic effects of Hizikia fusiforme (HF) fractions in α-melanocyte stimulating hormone-induced B16F10 mouse melanoma cells. Ethanol extractions of Hizikia fusiforme (EEHF) were subjected to fraction by using dichloromethane (CFHF), ethyl acetate (EAFHF), butanol (BFHF), and water (WFHF). EEHF, CFHF, and EAFHF inhibited tyrosinase activity and melanin synthesis in B16F10 mouse melanoma cells in a dose-dependent manner. The melanin contents were inhibited by 40.5% and 33.2% in response to treatment with 50 μg/ml of EEHF and CFHF, respectively. In addition, tyrosinase activities showed a 53.3% and 54.1% reduction in treatment with 50 μg/ml of EEHF and CFHF. Western blotting analysis showed that EEHF, CFHF, and EAFHF inhibited tyrosinase, TRP-1, TRP-2, and MITF expression in a dose-dependent manner. In conclusion, these findings indicate that ethanol and dichloromethane fractions of Hizikia fusiforme, which inhibit melanin synthesis and tyrosinase activity, are effective skin-whitening agents.Key words : Hizikia fusiforme, melanogenesis, tyrosinase *Corresponding author *Tel : +82-51-890-1594, Fax : +82-51-890-2646 *E-mail : hhj2001@deu.ac.kr This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.