This chapter presents several CMOS integrated circuits (ICs) realized for various optical applications such as high-definition multimedia interface (HDMI), light detection and ranging (LiDAR), and Gigabit Ethernet (GbE). First, 4-channel 10-Gb/s per channel optical transmitter and receiver array chipset implemented in a 0.13-μm CMOS process are introduced to realize a 10-m active optical cable for HDMI 2.1 specifications. Second, a 16-channel optical receiver array chip is realized in a 0.18-μm CMOS technology for LiDAR applications. Third, a 40-GHz voltagemode mirrored-cascode transimpedance amplifier (MC-TIA) is implemented in a 65-nm CMOS for a feasible 100-GbE application. Even with advanced nano-CMOS technologies, we have suggested novel circuit techniques for optimum performance, such as input data detection (IDD) for low power, feedforward and asymmetric preemphasis for high speed, double-gain feedforward for high gain, selectable equalizer (SEQ) for specific bandwidth, mirrored-cascode for fully differential topology, etc. We believe that these novel circuit techniques help to achieve low-cost, low-power solutions for various optical applications.