Abstract. In this paper, we study the fractional Kirchhoff equation with critical nonlinearitywhere N > 2s and (−∆) s is the fractional Laplacian with 0 < s < 1. By using a perturbation approach, we prove the existence of solutions to the above problem without the AmbrosettiRabinowitz condition when the parameter b small. What's more, we obtain the asymptotic behavior of solutions as b → 0.