2022
DOI: 10.4213/sm9649e
|View full text |Cite
|
Sign up to set email alerts
|

A direct proof of Stahl's theorem for a generic class of algebraic functions

Abstract: Under the assumption that Stahl's $S$-compact set exists we give a short proof of the limiting distribution of the zeros of Padé polynomials and the convergence in capacity of diagonal Padé approximants for a generic class of algebraic functions. The proof is direct, rather than by contradiction as Stahl's original proof was. The ‘generic class’ means, in particular, that all the ramification points of the multisheeted Riemann surface of the algebraic function in question are of the second order (that is, al… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 25 publications
0
0
0
Order By: Relevance