A wireless sensor network is a collection of batterypowered sensor nodes distributed in a geographical area. Inmany applications, such networks are left unattended for along period of time. These networks suffer from the problemslike high energy consumption, high latency time, and end- to-end low packet delivery ratio. To design a protocol that findsa trade-off between these problems is a challenging task. Inorder to mitigate energy consumption issue, different existingMedia Access Control (MAC) protocols such as S-MAC, RMAC,HEMAC, and Congestion-less Single Token MAC protocols havebeen proposed which ensure better packet delivery but fail toensure energy efficiency due to high end-to-end latency. Theproblem of high end-to-end latency is resolved with the existingrouting protocols such as Fault Tolerant Multilevel Routingprotocol (FMS)and Enhanced Tree Routing (ETR) protocol.AS2-MAC and Multi Token based MAC protocol are able toimprove the end-to-end packet delivery ratio. However, thehierarchical network structure used in these protocols increasestime and energy consumption during network reconstruction.This problem was further resolved in Distributed HierarchicalStructure Routing protocol by constructing the network structurein a distributed manner. In all these existing protocols, efficienttoken management and reliable data delivery ratio was notproperly addressed, which in turn consume more energy. So,it is clear that MAC and routing protocols both together cangive better results related to data transmission in WSN. Inorder to achieve the same, in this paper, we propose a reliabledata transmission algorithm that satisfies both routing and MACprotocol to improve the end-to-end data delivery. The proposedprotocol uses different control message exchange that ensures datapacket delivery in each individual levels and it ultimately uses oftokens to ensure reliable data transmission along with reducedtraffic congestion during end-to-end data delivery. The algorithmconsiderably improves the packet delivery ratio along with reduceenergy consumption of each sensor node. Simulation studies ofthe proposed approach have been carried out and its performancehas been compared with the Multi Token based MAC protocol,AS-MAC protocol and ETR routing protocol. The experimentalresults based on simulation confirms that the proposed approachhas a higher data packet delivery ratio.