Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Suspended particulate matter (SPM) is an indispensable component of water environments. Its fate and transport involve various physical and biogeochemical cycles. This paper provides a comprehensive review of SPM dynamics by integrating insights from biogeochemical processes, spatiotemporal observation techniques, and numerical modeling approaches. It also explores methods for diagnosing SPM-mediated biogeochemical processes, such as the flocculation kinetics test and organic matter composition analysis. Advances in remote sensing, in situ monitoring, and high-resolution retrieval algorithms are discussed, highlighting their significance in detecting and quantifying SPM concentrations across varying spatial and temporal scales. Furthermore, this review examines integrated models that incorporate population balance equations on the basis of flocculation kinetics into multi-dimensional sediment transport models. The results from this study provide valuable insights into SPM dynamics, ultimately enhancing our knowledge of SPM behavior and transport in water environments. However, uncertainties remain due to limited field data on flocculation kinetics and the need for parameter optimization in numerical models. Addressing these gaps through enhanced fieldwork and model refinement will significantly improve our ability to predict and manage SPM dynamics, which is critical for sustainable aquatic ecosystem management in an era of rapid environmental change.
Suspended particulate matter (SPM) is an indispensable component of water environments. Its fate and transport involve various physical and biogeochemical cycles. This paper provides a comprehensive review of SPM dynamics by integrating insights from biogeochemical processes, spatiotemporal observation techniques, and numerical modeling approaches. It also explores methods for diagnosing SPM-mediated biogeochemical processes, such as the flocculation kinetics test and organic matter composition analysis. Advances in remote sensing, in situ monitoring, and high-resolution retrieval algorithms are discussed, highlighting their significance in detecting and quantifying SPM concentrations across varying spatial and temporal scales. Furthermore, this review examines integrated models that incorporate population balance equations on the basis of flocculation kinetics into multi-dimensional sediment transport models. The results from this study provide valuable insights into SPM dynamics, ultimately enhancing our knowledge of SPM behavior and transport in water environments. However, uncertainties remain due to limited field data on flocculation kinetics and the need for parameter optimization in numerical models. Addressing these gaps through enhanced fieldwork and model refinement will significantly improve our ability to predict and manage SPM dynamics, which is critical for sustainable aquatic ecosystem management in an era of rapid environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.