Objectives
To test the hypothesis that rare variants are associated with Drug-induced long QT syndrome (diLQTS) and torsade de pointes (TdP).
Background
diLQTS is associated with the potentially fatal arrhythmia TdP. The contribution of rare genetic variants to the underlying genetic framework predisposing diLQTS has not been systematically examined.
Methods
We performed whole exome sequencing (WES) on 65 diLQTS cases and 148 drug-exposed controls of European descent. We employed rare variant analyses (variable threshold [VT] and sequence kernel association test [SKAT]) and gene-set analyses to identify genes enriched with rare amino-acid coding (AAC) variants associated with diLQTS. Significant associations were reanalyzed by comparing diLQTS cases to 515 ethnically matched controls from the NHLBI GO Exome Sequencing Project (ESP).
Results
Rare variants in 7 genes were enriched in the diLQTS cases according to SKAT or VT compared to drug exposed controls (p<0.001). Of these, we replicated the diLQTS associations for KCNE1 and ACN9 using 515 ESP controls (p<0.05). A total of 37% of the diLQTS cases also had ≥1 rare AAC variant, as compared to 21% of controls (p=0.009), in a predefined set of seven congenital LQTS (cLQTS) genes encoding potassium channels or channel modulators (KCNE1,KCNE2,KCNH2,KCNJ2, KCNJ5,KCNQ1,AKAP9).
Conclusions
By combining WES with aggregated rare variant analyses, we implicate rare variants in KCNE1 and ACN9 as risk factors for diLQTS. Moreover, diLQTS cases were more burdened by rare AAC variants in cLQTS genes encoding potassium channel modulators, supporting the idea that multiple rare variants, notably across cLQTS genes, predispose to diLQTS.