2023
DOI: 10.1155/2023/5870630
|View full text |Cite
|
Sign up to set email alerts
|

A Lightweight Binarized Convolutional Neural Network Model for Small Memory and Low-Cost Mobile Devices

Abstract: In recent years, the high cost of implementing deep neural networks due to their large model size and parameter complexity has made it a challenging problem to design lightweight models that reduce application costs. The existing binarized neural networks suffer from both the large memory occupancy and the big number of trainable params they use. We propose a lightweight binarized convolutional neural network (CBCNN) model to address the multiclass classification/identification problem. We use both binary weig… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 36 publications
0
0
0
Order By: Relevance