2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2016
DOI: 10.1109/embc.2016.7591219
|View full text |Cite
|
Sign up to set email alerts
|

A machine learning framework for auto classification of imaging system exams in hospital setting for utilization optimization

Abstract: In clinical environment, Interventional X-Ray (IXR) system is used on various anatomies and for various types of the procedures. It is important to classify correctly each exam of IXR system into respective procedures and/or assign to correct anatomy. This classification enhances productivity of the system in terms of better scheduling of the Cath lab, also provides means to perform device usage/revenue forecast of the system by hospital management and focus on targeted treatment planning for a disease/anatomy… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 5 publications
0
3
0
1
Order By: Relevance
“…Moreover, the presented work may also be transferred to other medical (imaging) modalities by utilizing modality event logs to predict billing codes for billing purposes. For instance, the examined anatomy of interventional X-ray exams was already successfully retrieved from modality log data in [13]. Extending this work by training a prediction model with corresponding billing code data and tailoring the feature extraction process to this imaging modality may enable automated procedure billing coding for interventional X-ray systems.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Moreover, the presented work may also be transferred to other medical (imaging) modalities by utilizing modality event logs to predict billing codes for billing purposes. For instance, the examined anatomy of interventional X-ray exams was already successfully retrieved from modality log data in [13]. Extending this work by training a prediction model with corresponding billing code data and tailoring the feature extraction process to this imaging modality may enable automated procedure billing coding for interventional X-ray systems.…”
Section: Discussionmentioning
confidence: 99%
“…Event logs from imaging modalities were used in [12] to retrieve the examined body region in MRI exams from sequence parameters with a classification accuracy of 94.7% and in [13] to classify interventional X-ray exams into respective procedures or examined anatomy, reaching a classification accuracy of 92.7%.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…En un ambiente clínico, los sistemas de intervención basados en rayos X (IXR, por sus siglas en inglés), son empleados para diferentes procedimientos en cardiología, neurología y angiología, en los cuales es sumamente importante clasificar correctamente cada examen del sistema IXR en los procedimientos respectivos y/o asignar la anatomía correcta, lo que representa un grado de oportunidad para la aplicación del aprendizaje máquina. Dicha clasificación mejora la calendarización y planeación de los tratamientos (Patil et al, 2016). En este trabajo se obtiene una exactitud mayor del 90% para la clasificación de exámenes, usando arboles de decisión, máquinas de soporte vectorial y k-vecinos más cercanos como plataformas de aprendizaje.…”
Section: Aprendizaje Automático En La Medicinaunclassified