l-DOPA-induced dyskinesia (LID), a detrimental consequence of dopamine replacement therapy for Parkinson's disease, is associated with an alteration in dopamine D1 receptor (D1R) and glutamate receptor interactions. We hypothesized that the synaptic scaffolding protein PSD-95 plays a pivotal role in this process, as it interacts with D1R, regulates its trafficking and function, and is overexpressed in LID. Here, we demonstrate in rat and macaque models that disrupting the interaction between D1R and PSD-95 in the striatum reduces LID development and severity. Single quantum dot imaging revealed that this benefit was achieved primarily by destabilizing D1R localization, via increased lateral diffusion followed by increased internalization and diminished surface expression. These findings indicate that altering D1R trafficking via synapse-associated scaffolding proteins may be useful in the treatment of dyskinesia in Parkinson's patients.
IntroductionIn the striatum, dopamine (DA) terminals from the substantia nigra pars compacta (SNc) converge with glutamatergic signals from the cortex on dendritic spines of striatal medium spiny projecting GABAergic neurons (1, 2). The degeneration of the nigrostriatal pathway in Parkinson's disease (PD) induces complex modifications in both DA and glutamate signaling, leading to significant morphological and functional modifications in the striatal neuronal circuitry (3-5). Chronic DA replacement therapy with l-3,4-dihydroxyphenylalanine (l-DOPA) superimposes upon these DA depletion-induced changes, resulting in debilitating motor complications known as l-DOPAinduced dyskinesia (LID) (6-8). At the molecular level, the subcellular organization of and functional interactions between glutamate and DA receptors within the striatum are crucial both in the pathogenesis of PD (9) and in the development of LID (10, 11). LID has indeed been associated with plastic changes in postsynaptic neuronal targets in the striatum, including elevated extracellular levels of glutamate (12) and DA (13) and abnormal trafficking of DA D1 receptor (D1R) (14, 15) and of NMDA and AMPA glutamate receptor subunits (5,10,16,17). Such exaggerated DA and glutamate receptor expression at the plasma membrane results in abnormal activation of key signaling kinases (18)(19)(20)(21)(22). All these changes point to dysfunctional interactions between DA and glutamate neurotransmission in LID (5,23,24), although the molecular mechanisms remain elusive, despite recent progress (14, 25).The membrane-associated guanylate kinase (MAGUK) proteins, such as postsynaptic density 95 (PSD-95), organize ionotropic glutamate receptors and their associated signaling proteins, regulating the strength of synaptic activity. Interestingly, PSD-95 might also interact with DA D1R (26), thereby potentially regulating DA