2020
DOI: 10.1111/biom.13330
|View full text |Cite
|
Sign up to set email alerts
|

A multiple robust propensity score method for longitudinal analysis with intermittent missing data

Abstract: Longitudinal data are very popular in practice, but they are often missing in either outcomes or time‐dependent risk factors, making them highly unbalanced and complex. Missing data may contain various missing patterns or mechanisms, and how to properly handle it for unbiased and valid inference still presents a significant challenge. Here, we propose a novel semiparametric framework for analyzing longitudinal data with both missing responses and covariates that are missing at random and intermittent, a genera… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
14
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

5
3

Authors

Journals

citations
Cited by 18 publications
(14 citation statements)
references
References 33 publications
0
14
0
Order By: Relevance
“…Throughout this work, we assumed that all the main data points were observed or missing completely at random, which may not be the case in some applications. However, our method can easily be embedded into a well‐developed scheme, such as the inverse probability weight technique (Chen et al., 2021; Enders, 2010). More details of the estimation procedure are given in Section F of the Supporting Information.…”
Section: Discussionmentioning
confidence: 99%
“…Throughout this work, we assumed that all the main data points were observed or missing completely at random, which may not be the case in some applications. However, our method can easily be embedded into a well‐developed scheme, such as the inverse probability weight technique (Chen et al., 2021; Enders, 2010). More details of the estimation procedure are given in Section F of the Supporting Information.…”
Section: Discussionmentioning
confidence: 99%
“…Another interesting work is to extend ELW to the case with competing risks (Austin et al, 2016;Lau et al, 2009). The techniques, such as inverse probability weight that are commonly adopted in the missing data problem, can be applied to address the issue of biased sampling (Chen et al, 2019(Chen et al, , 2021b. Also, it is highly likely that multiple secondary outcomes that are associated with the time-to-event are available in the study, so how to extend our proposal to aggregate various datasets would be of great interest.…”
Section: Discussionmentioning
confidence: 99%
“…One direct extension is to address missing data problem in the main analysis. In presence of high missingness, our method can be easily adjusted by adopting some well-known scheme, such as inverse probability weight, 31,33,34 into the estimating function g(D u i ; 𝜷). More details about this extension is provided in section 3.2 in Appendix S1.…”
Section: Discussionmentioning
confidence: 99%