Herein, an efficient numerical solver for stochastic differential equations based on memristors is presented. The solver utilizes the stochastic switching effect in memristive devices to simulate the generation of a Brownian path and employs iterative Euler method computations within memristive crossbars. The correctness of the solution paths generated by the system is examined by solving the Black–Scholes equations and comparing the paths to analytical solutions. It is found that the absolute error of a 128‐step path is limited to an order of . Herein, the tolerance of the system is also accessed to crossbar nonidealities by comparing the numerical and analytical paths' variation in error. The numerical solver is sensitive to the variation in operating conditions, with the error increasing by , , and as the ambient temperature, wire resistance, and stuck probability of the memristor increase to extreme conditions. The solver is tested on a variety of problems to show its utility for different calculations. And, the resource consumption of the proposed structure built with existing technology is estimated and it is compared with similar iterative solvers. The solver generates a solution with the same level of accuracy from to faster than similar digital or mixed‐signal designs.